# **Appendix F: Air Quality Technical Assessment**

The definition of acronyms used in this Appendix are:

AAQS Ambient Air Quality Standards APCD Air Quality Control Division

AP-42 EPA's compilation of emission factors

AQRV Air Quality Related Values

BART Best Available Retrofit Technology

BTEX Benzene, toluene, ethylbenzene, and xylenes CAAQS Colorado Ambient Air Quality Standards CAFO Concentrated animal feeding operation

CAMx Comprehensive Air Quality Model with Extensions

CH4 Methane

CO Carbon monoxide CO2 Carbon dioxide

CO2e Carbon dioxide equivalent

km Kilometer

μg/m3 Micrograms per cubic meterMMscf Million standard cubic feet

mtpy Metric tons per year

N NitrogenN2O Nitrous oxideNO2 Nitrogen dioxideNOx Oxides of nitrogen

NAAOS National Ambient Air Quality Standards

PM Particulate matter

PM2.5 Particulate matter less than or equal to 2.5 microns in diameter PM10 Particulate matter with aerodynamic diameter of 10 microns or less

ppb Parts per billion ppm Parts per million

PSD Prevention of Significant Deterioration

S Sulfur

SO2 Sulfur dioxide

tpy Tons per year (short)

# Introduction

This air quality appendix provides an outline of the techniques that were employed in the environmental analysis process, and planning process, for the Kremmling Field Office (KFO). The PRMP/FEIS addresses future land and resource management options, and the potential environmental impacts that may result from each of those options, for approximately 377,900 surface acres and approximately 653,500 subsurface acres of mineral estate administered by the KFO in Jackson, Grand, and Summit counties in their entirety, and in portions of Eagle, Larimer and Routt Counties, Colorado. This combined acreage (surface acres and subsurface mineral estate) is being analyzed as the "Decision Area" for the purposes of this PRMP/FEIS. The "Planning Area" comprises all land ownerships in these counties within the boundaries of the Kremmling Field Office, totaling about 3.1 million surface acres and 2.2 million acres of federal mineral estate. Under the PRMP/FEIS, approximately 91 percent of the Federal mineral estate in the Decision Area is available for oil and gas leasing. Approximately 27 percent of federal mineral estate in the Decision Area is leased for oil and gas.

Approximately 675 wells have been drilled in the Planning Areas since the early 1920s. Averaged over the past 90 years, this is approximately 7 to 8 wells per year. After internal and external scoping was conducted during the planning process, it was determined that a qualitative assessment for air resource impacts was appropriate for most management activities proposed in the DRMP/DEIS. A quantitative Emissions Inventory was developed to analyze the potential emissions associated with oil and gas activities and livestock grazing. Due to the relatively low level of fluid minerals development, and to the highly speculative nature of currently available data, including the lack of well location data, the BLM determined that a hypothetical Air Quality Modeling Assessment for the DRMP/DEIS would not provide useful, or accurate, predictive information for the public or for the decision-maker. When adequate data becomes available, such as during the project application stage, it may become necessary to require air quality modeling in order to assess the potential impacts during the National Environmental Policy Act (NEPA) environmental analysis process for future activities prior to authorization by the BLM.

Historically, there has been relatively little oil or gas development in the Planning Area; the underground geology of the area is not well understood. If, or when, exploration wells are drilled, more information will be known about the location, quality, and characteristics of the resources. The KFO has a Reasonably Foreseeable Development (RFD) Scenario that discusses the potential of up to 370 oil and gas wells (192 wells on Federal lands and 178 wells on fee lands) to be drilled over the next 20 years (BLM 2008r). The BLM determined that the preparation of an Emission Inventory would be the most appropriate assessment for air quality at this time. Detailed information is either unknown, or too speculative, to conduct a quantitative air quality impacts analysis (a Modeling Analysis). If, or when, activities are proposed for implementation under the Approved RMP (Approved Plan), and if air quality is

Proposed Resource Management Plan and Final Environmental Impact Statement

determined to be an issue of concern during the environmental analysis process, a more detailed air quality analysis will be conducted, including, potentially, a more detailed Emissions Inventory or a Modeling Assessment. See Appendix X, Air Quality Management Plan for related information.

The BLM – Colorado is currently conducting a Colorado-wide oil and gas modeling study (CARMMS) that will include analyses for each BLM Field Office including the KFO. For this Study, oil and gas emissions increases projected out 10 years from year 2011 according to RFD and recent oil and gas development data will be modeled and impacts will be determined for each Field Office. Regional ozone and other pollutants and air quality related values (AQRVs) including visibility impacts will be evaluated in that Study. The Study should be completed in spring 2014. As future oil and gas development occurs in the KFO, the BLM Colorado plans to compare project-specific permitted levels of emissions to the KFO oil and gas emissions rates modeled in the regional study along with the corresponding modeling results to ensure that the BLM Colorado is permitting activities that stay within the acceptable modeled emissions analyzed in the cumulative air quality impacts study.

# **Air Quality Management Framework**

The basic framework for controlling air pollutants in the United States is mandated by the Clean Air Act (CAA), and its amendments, and by State air quality management programs. Federal and State air quality management programs have evolved using two distinct management approaches:

- State Implementation Plan -- The first type of management approach is the State Implementation Plan (SIP) process of setting ambient air quality standards for acceptable exposure to air pollutants; conducting monitoring programs in order to identify locations experiencing air quality problems; and developing programs and regulations designed to reduce, or eliminate, those problems.
- Hazardous Air Pollutants -- The second type of management approach involves the Hazardous Air Pollutant (HAP) regulatory process, which identifies specific chemical substances that are potentially hazardous to human health, and then sets emission standards in order to regulate the amount of those substances that can be released by individual commercial or industrial facilities, or by specific types of equipment.

Air quality programs based upon ambient air quality standards typically address air pollutants that are produced in large quantities by widespread types of emission sources, and that are of public health concern. In addition to pollutants for which there are adopted ambient standards, the SIP planning process is also used in order to address regional haze visibility issues. The industry-specific emission regulation approach is used currently to address air quality concerns of hazardous air pollutants and some ozone-depleting chemicals.

For the BLM, air quality and climate are the principle components of the BLM Air Resource Management Program. The program focuses on management of air resources, as well as on how they affect, and are affected by, other resource values and uses of the public lands.

Air quality is determined by the composition (chemical and physical) and concentration of atmospheric pollutants, meteorology, and terrain; it also includes noise considerations, smoke management, and visibility. The CAA currently identifies six nationally regulated air pollutants (called criteria pollutants) and 187 hazardous air pollutants, subject to change over time. For more information, visit: http://www.epa.gov/ttn/atw/pollsour.html. Activities, programs, and projects initiated by the BLM, as well as activities and projects initiated by external proponents, have the potential to impact air quality by emissions of these pollutants. The BLM analyzes the potential impacts of all Proposed Actions on air quality as part of its planning, environmental analysis, and decision-making processes.

Climate represents the long-term statistics of daily, seasonal, and annual weather conditions. Climate is the composite of generally prevailing weather conditions of a particular region throughout the year, averaged over a series of years (typically, 30 years). Climate is both a driving force and a limiting factor for biological, ecological, and hydrologic processes, and for resource management activities such as disturbed-site reclamation, wildland fire management, drought management, rangeland and watershed management, and wildlife habitat administration.

The BLM is responsible for ensuring that the activities, programs, and projects it undertakes or authorizes comply with all applicable laws, rules, regulations, policies, standards, and guidelines; including establishing conditions of approval (COAs) and stipulations in leases and permits. Under the Federal Land Policy and Management Act (FLPMA), the BLM is responsible for developing RMPs that provide for compliance with applicable pollution control laws, including State and Federal air, water, noise, or other pollution standards or implementation plans; and to manage the public lands in a manner that will protect the quality of scientific, scenic, historical, ecological, environmental, air and atmospheric, water resource, and archeological values. In addition, RMPs may also establish management goals and objectives for BLM-managed public lands, and their associated resources, which require managing activities in a manner designed to attain, or maintain, a higher standard of air quality than that required by the CAA.

#### Criteria Pollutants

The U.S. Environmental Protection Agency (EPA) has established National Ambient Air Quality Standards (NAAQS) for six different pollutants, called criteria pollutants. Criteria pollutants include carbon monoxide (CO), nitrogen dioxide (NO<sub>2</sub>), sulfur dioxide (SO<sub>2</sub>), ozone (O<sub>3</sub>), particulate matter (PM<sub>10</sub>, PM<sub>2.5</sub>), and lead (Pb). Federal ambient air quality standards are primarily based upon evidence of acute and chronic health effects that apply to outdoor locations to which the general public has access. The criteria pollutants are:

- Carbon Monoxide -- Carbon monoxide is a colorless, odorless gas formed during incomplete combustion of organic compounds. The major sources of carbon monoxide are combustion processes, such as fuel combustion in motor vehicles and industrial processes, agricultural burning, prescribed burning, and wildfires. Carbon monoxide is a public health concern because it combines readily with hemoglobin in the blood, and, as a result, reduces the amount of oxygen transported to body tissues. Relatively low concentrations of carbon monoxide can significantly affect the amount of oxygen in the blood stream because carbon monoxide binds to hemoglobin 200 times to 250 times more strongly than does oxygen. The cardiovascular system and the central nervous system can be affected when 2.5 percent to 4.0 percent of the hemoglobin in the blood is bound to carbon monoxide rather than to oxygen. Usually, due to its low chemical reactivity and low solubility, indoor carbon monoxide levels are similar to outdoor levels.
- **Nitrogen Dioxide --** Nitrogen dioxide is a brownish red gas formed as an indirect product of combustion processes. Some nitrogen dioxide can be formed from nitrogen compounds contained in the combusted fuel; however, most is produced by high-temperature oxidation of nitrogen gas in the air. The dominant oxide of nitrogen produced during combustion is nitric oxide. Nitric oxide is converted fairly quickly into nitrogen dioxide by chemical reactions with atmospheric oxygen and ozone. Nitrogen dioxide is a respiratory and eye irritant, as well as a plant toxin. Nitrogen dioxide is also a precursor of photochemically generated ozone, nitric acid, and nitrate aerosols.
- **Sulfur Dioxide** -- Sulfur dioxide is a colorless, but pungent, gas formed primarily by combustion of sulfur-containing compounds. Sulfur dioxide is a respiratory irritant, and undergoes chemical reactions that can form sulfuric acid and various sulfate aerosols.
- Ozone -- Ozone is not released directly into the atmosphere. It forms as the result of complex chemical reactions that occur in sunlight. The chemical reactions that produce ozone involve a wide range of volatile organic compounds (VOCs) and oxides of nitrogen. VOCs and nitrogen oxides (the combination of nitric oxide and nitrogen dioxide) are the precursor emission products that form ozone. The atmospheric chemical reaction processes that produce ozone also produce chemically formed particulate matter and acidic compounds. Combustion processes, which produce nitrogen oxides, and evaporation of VOCs, are the major emission sources for organic compounds. Common combustion sources include: fuel combustion in motor vehicles; fuel combustion in industrial processes; agricultural burning; prescribed burning; and wildfires. Common

evaporative sources of organic compounds include paints, solvents, liquid fuels, or liquid chemicals. Ozone is a strong oxidizing agent that reacts with a wide range of materials and biological tissues. It is a respiratory irritant that can result in acute and chronic impacts to the respiratory system. Recognized impacts include: reduced pulmonary function; pulmonary inflammation; increased airway reactivity; aggravation of existing respiratory diseases such as asthma, bronchitis, and emphysema; physical damage to lung tissue; decreased exercise performance; and increased susceptibility to respiratory infections. In addition, ozone is a necrotic agent that significantly damages leaf tissues of crops and natural vegetation. Ozone also damages many materials by acting as a chemical oxidizing agent. Usually, due to its photochemical activity, indoor ozone levels are much lower than outdoor levels.

• Particulate Matter -- The major emission source categories for suspended particulate matter include: combustion sources, such as fuel combustion in motor vehicles and industrial processes, agricultural burning, prescribed burning, and wildfires; aerosols; industrial grinding and abrasion processes; soil disturbance by construction, agricultural and forestry equipment, recreational vehicles, or other vehicles and equipment; mining and other mineral extraction activities; and wind erosion resulting from exposed soils and sediments. Suspended particulate matter is also formed by atmospheric chemical reactions.

Suspended particulate matter represents a diverse mixture of solid and liquid material having size, shape, and density characteristics that allow the material to remain suspended in the air for meaningful time periods. The physical and chemical composition of suspended particulate matter is highly variable, resulting in a wide range of public health concerns. Many components of suspended particulate matter are respiratory irritants. Some components, such as crystalline or fibrous minerals, are primarily physical irritants. Other components are chemical irritants, such as sulfates, nitrates, and various organic chemicals. Suspended particulate matter also can contain compounds, such as heavy metals and various organic compounds that are systemic toxins or necrotic agents. Suspended particulate matter or compounds adsorbed on the surface of particles can also be carcinogenic or mutagenic chemicals. Public health concerns associated with suspended particulate matter focus on the particle size ranges likely to reach the lower respiratory tract or the lungs. Inhalable particulate matter (PM<sub>10</sub>) represents particle size categories that are likely to reach either the lower respiratory tract or the lungs after being inhaled. Fine particulate matter (PM<sub>2.5</sub>) represents particle size categories likely to penetrate to the lungs after being inhaled. (The "10" in PM<sub>10</sub> and the "2.5" in PM<sub>2.5</sub> are not upper size limits. The numbers refer to the particle size range collected with 50 percent mass efficiency by certified sampling devices; larger particles are collected with lower efficiencies, and smaller particles are collected with higher efficiencies.)

In addition to public health impacts, suspended particulate matter results in a variety of material damage and nuisance impacts, including abrasion; corrosion, pitting, and other chemical reactions on material surfaces; soiling; and transportation hazards due to visibility impairment.

Lead -- Lead is a toxic metal that can cause learning disabilities and damage to the
kidneys and brain. Atmospheric lead compounds occur, primarily, as a component of
suspended particulate matter. Since the phase-out of lead additives in most gasoline, the
dominant source of lead in atmospheric particles in the United States has become
industrial facilities, such as lead smelters, and dust from deteriorating lead-based paints.

# **Colorado and National Ambient Air Quality Standards**

Colorado has adopted State ambient air quality standards that are, generally, equal to current or former Federal standards. Colorado has adopted a 3-hour sulfur dioxide standard that is more stringent than the comparable Federal standard. Table F-2.1, Colorado and National Ambient Air Quality Standards, summarizes current Federal and Colorado ambient air quality standards. (*NOTE: Since this table was created, the EPA has promulgated some additional standards: an additional 1-hour standard for NO*<sub>2</sub>, which is 189 ug/m<sup>3</sup>; an additional 1-hour standard for SO<sub>2</sub>, which is 196 ug/m<sup>3</sup>; also, the PM<sub>2.5</sub> annual standard is now 12 ug/m<sup>3</sup>.)

Air pollutants covered by State and Federal ambient air quality standards can be categorized by the nature of their toxic effects, such as:

- irritants, such as ozone, particulate matter, nitrogen dioxide, sulfur dioxide, sulfate particles, and hydrogen sulfide, that affect the respiratory system, eyes, mucous membranes, and the skin;
- asphyxiants, such as carbon monoxide and nitric oxide, that displace oxygen or interfere
  with oxygen transfer in the circulatory system, thereby affecting the cardiovascular and
  central nervous system;
- necrotic agents, such as ozone, nitrogen dioxide, and sulfur dioxide, that directly cause cell death; or
- systemic poisons, such as lead particles, that affect a range of tissues, organs, and metabolic processes.

Table F-2.1 National Ambient Air Quality Standards (NAAQS), Colorado Ambient Air Quality Standards (CAAQS), and PSD Significant Monitoring Concentrations

| Criteria<br>Pollutant        | Avg. Period | Primary Standard<br>(μg/m <sup>3</sup> [ppm/ppb]) | Secondary<br>Standar | Addition<br>al<br>Standsar<br>ds | PSD Significant<br>Monitoring<br>Concentration |  |  |
|------------------------------|-------------|---------------------------------------------------|----------------------|----------------------------------|------------------------------------------------|--|--|
|                              |             | NAAQS                                             | NAAQS                | CAAQS                            |                                                |  |  |
| со                           | l-hour      | 40,000<br>[35ppm]                                 | None                 | NA                               | NA                                             |  |  |
| со                           | 8-hour      | 10,000<br>[9ppm]                                  | None                 | NA                               | 575 ug/m³                                      |  |  |
| NO <sub>2</sub>              | l-hour      | 189<br>[100ppb]                                   | NA                   | NA                               | NA                                             |  |  |
| NO <sub>2</sub>              | Annual      | 100<br>[53ppb]                                    | 100<br>[53ppb]       | NA                               | 14 ug/m3                                       |  |  |
| $PM_{10}$                    | 24-hour     | 150                                               | 150                  | NA                               | 10 ug/m3                                       |  |  |
| PM <sub>2.5</sub>            | 24-hour     | 35                                                | 35                   | NA                               | 4 ug/m3                                        |  |  |
| PM <sub>2.5</sub>            | Annual      | 15                                                | 15                   | NA                               | NA                                             |  |  |
| SO <sub>2</sub> °            | l-hour      | 196<br>[75ppb]                                    | NA                   | NA                               | NA                                             |  |  |
| SO <sub>2</sub> <sup>f</sup> | 3-hour      | NA                                                | 1300<br>[.5ppm]      | 700 ug/m3                        | NA                                             |  |  |
| SO <sub>2</sub> <sup>8</sup> | 24-hour     | NA                                                | NA                   | NA                               | 13 ug/m3                                       |  |  |
| SO <sub>2</sub> <sup>8</sup> | Annual      | 80<br>[0.030]                                     | NA                   | NA                               | NA                                             |  |  |
| Ozone                        | 8-hour      | .075 ppm                                          | .075 ppm             | NA                               | 100 tpy VOCs or Nox                            |  |  |

| Lead                        | rolling 3-month | .15 ug/m3 | .15 ug/m3 | NA | NA        |
|-----------------------------|-----------------|-----------|-----------|----|-----------|
| Lead                        | 3-month         | NA        | NA        | NA | .1 ug/m3  |
| Fluorides                   | 24-hour         | NA        | NA        | NA | .25 ug/m3 |
| Total Reduced<br>Sulfur     | 1-hour          | NA        | NA        | NA | .2 ug/m3  |
| Reduced Sulfur<br>Compounds | l-hour          | NA        | NA        | Na | 10 UG/M3  |

<sup>\*\*</sup>The significant monitoring concentrations (de minimis levels) apply only to new sources and modifications subject to PSD review (see Regulation No. 3, Part D, section VI.)

CAAQS = Colorado Ambient Air Quality Standards

 $\mu g/m^3 = micrograms per cubic meter$ 

N/A = not applicable

NAAQS = National Ambient Air Quality Standards

For short-term (non-annual) averaging times, compliance with the CO, PM<sub>10</sub>, and SO<sub>2</sub> NAAQS is based on the highest-second-highest (H2H) short-term concentration, while compliance with the short-term PM<sub>25</sub> and NO<sub>2</sub> NAAQS is based on the highest 3-year average eighth-highest short-term concentration. Short-term modeled concentrations reported here are highest-second-highest for CO, PM<sub>10</sub>, and SO<sub>2</sub>, and highest-eighth-highest for PM<sub>25</sub> and NO<sub>2</sub>. Annual (long-term) modeled concentrations are highest concentrations which are required for an annual average NAAQS compliance demonstration.

b The 1-hour NO<sub>2</sub> background concentration was not added to the modeled concentration. February 22, 2010 USEPA guidance describes identification of the 3-year average of the eighth-highest modeled concentration on a receptor-by-receptor basis (USEPA 2010c). Inclusion of background concentration is not included in the procedure for comparing AERMOD modeling results with the 1-hour NO<sub>2</sub> NAAQS.

<sup>&</sup>lt;sup>6</sup> PM<sub>2.5</sub> and PM<sub>10</sub> modeling results are shown for Alternatives B, C, and D fugitive dust emission rates (which are identical) and for Alternative A non-fugitive dust emission rates.

<sup>&</sup>lt;sup>d</sup> Due to 1-hour NO<sub>2</sub>, 24-hour PM<sub>2.5</sub>, and 1-hour SO<sub>2</sub> NAAQS standard formats that use a three-year average to determine compliance, only one total concentration is reported for the three-year modeling period.

<sup>&</sup>lt;sup>6</sup> The new 1-hour  $SO_2$  standard became effective on August 23, 2010. To comply with the 1-hour  $SO_2$  standard, the three-year average of the annual 99th percentile of the 1-hour daily maximum concentration must be less than or equal to 195.5  $\mu g/m^3$  (75 ppb).

<sup>&</sup>lt;sup>f</sup> As of August 23, 2010, this standard transitioned from a primary standard (protecting human health) to a secondary standard (protecting environment) at the federal level. However, state air quality agencies have discretion to continue enforcing this standard as a primary standard. The 3-hour standard will become obsolete at the federal level once attainment/nonattainment designations under the new 1-hour SO<sub>2</sub> standard are promulgated by USEPA.

<sup>8</sup> The 24-hour and annual standard will become obsolete at the federal level once attainment/nonattainment designations under the new 1-hour SO<sub>2</sub> standard are promulgated by USEPA.

### **Hazardous Air Pollutants**

Air quality programs based upon the regulation of other hazardous substances typically address chemicals used, or produced, by limited categories of industrial facilities. Programs regulating hazardous air pollutants focus on substances that alter or damage the genes and chromosomes in cells (mutagens); substances that affect cells in ways that can lead to uncontrolled cancerous cell growth (carcinogens); substances that can cause birth defects or other developmental abnormalities (teratogens); substances with serious acute toxicity effects; and substances that undergo radioactive decay processes (resulting in the release of ionizing radiation). Federal air quality management programs for hazardous air pollutants focus on setting emission limits for particular industrial processes rather than on setting ambient exposure standards. Federal emission standards for hazardous air pollutants have been promulgated as National Emission Standards for Hazardous Air Pollutants (NESHAP) and as Maximum Achievable Control Technology (MACT) standards. The Federal MACT standard for mercury emissions from coal-fired power plants represents an example of such hazardous air pollutant control programs. The NESHAP and MACT standards are implemented through State and Federal air quality permit programs. Colorado Air Pollution Control Division (APCD) Regulation 8 adopts Federal NESHAP and MACT standards by reference, and includes additional requirements for the State asbestos control program.

# **Visibility Impairment**

The EPA, the BLM, the US Forest Service (USFS), the National Park Service (NPS), the U.S. Fish and Wildlife Service (USFWS), and regional associations of State Air Quality Management Agencies operate the Inter-agency Monitoring of Protected Environments (IMPROVE) program. The IMPROVE program monitors visibility conditions and particulate matter concentrations in, or near, Class I Areas across the country. Some of the IMPROVE sites also document visibility conditions with remotely operated cameras. There are six IMPROVE monitoring locations in Colorado; three of which are in, or near, the Planning Area. The NPS operates one Monitoring Station on the east side of Rocky Mountain National Park. The USFS operates one Monitoring Station at Buffalo Pass (south end of the Mount Zirkel Wilderness), and one Monitoring Station at the Aspen Mountain Ski Area (east of the Maroon Bells-Snowmass Wilderness).

# **Atmospheric Deposition Constituents**

Two separate Air Quality Monitoring Programs are being used to monitor atmospheric deposition of various compounds. The Programs originated as acid deposition monitoring programs, but they have expanded to include monitoring of other compounds. The EPA Clean Air Status and Trends Network (CASTNET) operates as a dry deposition monitoring program. There are three CASTNET monitoring sites in Colorado: Rocky Mountain National Park, Gothic, and Mesa Verde National Park. The CASTNET monitoring site in Rocky Mountain National Park is not co-located with the IMPROVE site in the Park. The National Atmospheric Deposition Program/National Trends Network (NADP/NTN) program provides wet deposition monitoring focused on acid deposition issues. A mercury deposition monitoring program was integrated into the NADP/NTN program in 1996, although it does not operate at all NADP/NTN sites. Nationally, there are more than 250 sites in the NADP/NTN network, with 19 sites in Colorado. Some of the NADP/NTN sites are either colocated, or located near, CASTNET or IMPROVE monitoring sites.

### **Greenhouse Gases**

Greenhouse gases (GHGs) are compounds in the atmosphere that absorb infrared radiation and re-radiate a portion of that back toward the Earth's surface, thereby trapping heat and warming the Earth's atmosphere. The most important naturally occurring GHG compounds are carbon dioxide (CO<sub>2</sub>), methane (CH<sub>4</sub>), nitrous oxide (N<sub>2</sub>O), ozone (O<sub>3</sub>), and water vapor (H<sub>2</sub>O). Carbon dioxide, methane, and nitrous oxide are produced naturally by respiration and other physiological processes of plants, animals, and microorganisms; by the decomposition of organic matter; by volcanic and geothermal activity; by naturally occurring wildfires; and by natural chemical reactions in soil and water. Ozone is not released directly by natural sources. It forms during complex chemical reactions in the atmosphere among organic compounds and nitrogen oxides in the presence of ultraviolet radiation. Water vapor is a strong GHG, although its concentration in the atmosphere is primarily a result of (not a cause of) changes in surface and lower atmospheric temperature conditions.

Although naturally present in the atmosphere, concentrations of carbon dioxide, methane, and nitrous oxide are also affected by emissions from industrial processes, transportation technology, urban development, agricultural practices, and other human activity. The Intergovernmental Panel on Climate Change (IPCC) estimates the following changes in global atmospheric concentrations of the most important GHGs (IPCC 2001, 2007):

- atmospheric concentrations of carbon dioxide have risen from a pre-industrial background of 280 parts per million by volume (ppm) to 379 ppm in 2005;
- atmospheric concentrations of methane have risen from a pre-industrial background of about 0.70 ppm to 1.774 ppm in 2005; and

• atmospheric concentrations of nitrous oxide have risen from a pre-industrial background of .270 ppm to 0.319 ppm in 2005.

The IPCC has concluded that these changes in atmospheric composition are almost entirely the result of human activity, not the result of changes in natural processes that produce or remove these gases (IPCC 2007).

Carbon dioxide, methane, and nitrous oxide have atmospheric residence times ranging from about a decade to more than a century. Several other important GHG compounds with long atmospheric residence times are produced almost entirely by various industrial processes. These include sulfur hexafluoride (SF<sub>6</sub>), and a wide range of fluorinated hydrocarbons (HFCs). Fluorinated compounds typically have atmospheric residence times ranging from a few decades to thousands of years. The overall global warming potential of GHG emissions is presented typically in terms of carbon dioxide equivalents (CO<sub>2</sub>e), using equivalency factors developed by the IPCC. The IPCC has published sets of CO<sub>2</sub>e factors as part of its periodic climate change assessment reports issued in 1995, 2001, and 2007.

Of these pollutants, carbon dioxide, methane, and nitrous oxide are commonly emitted by oil and gas sources, while the remaining three GHGs are emitted in extremely small quantities, or are not emitted at all. As the major component of natural gas, CH<sub>4</sub> emissions resulting from oil and gas exploration, production, and transportation are considerable.

Aggregate GHG emissions are discussed in terms of carbon dioxide equivalent (CO<sub>2</sub>e). Each GHG has a global warming potential (GWP). As defined by the EPA, the GWP provides a "ratio of the time-integrated radiative forcing from the instantaneous release of one kilogram of a trace substance relative to that of one kilogram of CO<sub>2</sub>" (GPO 2010). In other words, the GWP accounts for the intensity of each GHG's heat trapping effect and its longevity in the atmosphere. The GWP provides a method to quantify the cumulative impact of multiple GHGs released into the atmosphere by calculating CO<sub>2</sub>e for the GHGs. The EPA's GWPs are provided in **Error! Reference source not found.** F-2.2, and were determined on a 100-year basis. These GWPs are established in EPA regulations in Title 40 of the Code of Federal Regulations (CFR) Part 98.

Table F-2.2: GHGs Reported to EPA and Global Warming Potentials

| Air Pollutant       | Chemical<br>Symbol or<br>Acronym | Global Warming Potential |
|---------------------|----------------------------------|--------------------------|
| Carbon dioxide      | $CO_2$                           | 1                        |
| Methane             | CH <sub>4</sub>                  | 21                       |
| Nitrous oxide       | N <sub>2</sub> O                 | 298                      |
| Hydrofluorocarbons  | HFCs                             | Varies                   |
| Perfluorocarbons    | PFCs                             | Varies                   |
| Sulfur hexafluoride | SF6                              | 23,900                   |

Sources: GPO 2009; GPO 2010, Table A-1.

To date, the EPA has not mandated stationary source GHG emission reductions or set NAAQS for these pollutants. The EPA does require certain GHG emission sources, and some GHG suppliers, to report GHG emissions. Beginning in 2011, large stationary sources of GHGs are required to obtain Air Quality Permits from local, State, or Federal air quality agencies (GPO 2010f).

The EPA estimates that national GHG emissions in 2006 were 6,801,812,000 tons CO<sub>2</sub>e (EPA 2008). National GHG emissions in 2006 represented a 14 percent increase from estimated 1990 national GHG emissions (5,964,166,000 tons CO<sub>2</sub>e). The EPA categorized the major economic sectors contributing to U.S. emissions of GHG compounds as:

- electric power generation (34.5 percent);
- transportation (28.6 percent);
- industrial processes (19.9 percent);
- agriculture (7.7 percent);
- commercial land uses (5.7 percent); and
- residential land uses (3.6 percent).

# **Air Quality Permit Programs**

The CAA establishes a basic Air Quality Permit Program for industrial emission sources. Key elements of the Federal requirements include pre-construction permits [new source review and prevention of significant deterioration (PSD)] and annual Operating Permits (Title V). Separate reconstruction requirements have been established for non-attainment pollutants and for attainment pollutants. The Federal New Source Review (NSR) Program applies in nonattainment areas to the applicable non-attainment pollutants. A key element of the NSR Program is a requirement to implement emission offsets so that a new source of emissions will not result in a net increase in non-attainment pollutant emissions for the non-attainment area. The Federal PSD Program applies to attainment pollutants. Key elements of the PSD Program include potential requirements for pre-construction and post-construction ambient air quality monitoring; the establishment of baseline ambient air quality levels maximum cumulative pollutant increments allowed above those baseline levels; the evaluation of proposed emission sources in order to determine their consumption of available PSD pollutant increments; and the evaluation of visibility impacts in designated Class I Wilderness Areas, National Parks, and National Monuments. The Federal operating permit program is referred to as the Title V Permit Program, which establishes reporting and recordkeeping requirements designed to ensure that conditions imposed by pre-construction permits are being met.

States, in general, have assumed primary responsibility for enforcing most Federal permit requirements, with the EPA exercising a formal review and oversight responsibility. Some States, including Colorado, have separate air permit programs authorized by State legislation. State air permit requirements typically cover emission sources that are smaller than those subject to Federal permit requirements. In most cases, including Colorado, State air permit programs have been integrated with Federal NSR, PSD, and Title V requirements, to provide a consolidated permit program. Under consolidated permit programs, basic State permit requirements apply to all sources that are not specifically exempted. Additional NSR and PSD program requirements, including EPA review of the permit, become applicable if sources exceed various size or emission thresholds. The owners and operators of emission sources are the parties responsible for obtaining required air permits.

The Colorado Air Pollution Control Commission (APCD) administers State and Federal air permit programs in Colorado through the Colorado Air Pollution Control Division (APCD) of the Colorado Department of Public Health and Safety (CDPHE). In addition to permit programs for stationary emission sources, the Colorado APCD administers a State permit program that regulates open burning and prescribed fires. Colorado APCD Regulation 9 establishes separate permit programs for open burning and prescribed fires. The Colorado APCD administers the prescribed fire permit program throughout the State and administers the Open Burn Permit Program in most Counties. Administration of the Open Burn Permit Program has been delegated to some Counties (Boulder, Eagle, El Paso, Grand, Jefferson, Lake, Larimer, Los Animas, Mesa, Pueblo, Routt, Summit, and Weld). Prescribed fires smaller than *de minimis* thresholds set by Regulation 9 qualify for open burn permits.

State regulations define significant users of prescribed fire as local, State, or Federal agencies, or private landowners, that manage or own more than 10,000 acres of grassland or forest land in Colorado, and that plan to use prescribed fires, broadcast burns, or pile burns which are expected to generate more than 10 tons of  $PM_{10}$  in a calendar year. Significant users of prescribed fire are required to submit Prescribed Fire Plans and obtain Prescribed Fire Permits. Prescribed Fire Plans submitted by significant users of prescribed fire can cover a period of up to 10 years, and are subject to public review and comment. The BLM, the USFS, the NPS, and the USFWS have all received approval for their Prescribed Fire Plans.

# **Prevention of Significant Deterioration**

The Federal CAA requires a planning program with the goal that all areas of the country achieve the Federal ambient air quality standards within various specified timeframes. For attainment areas that already meet the Federal ambient air quality standards, the Federal PSD Permit Program established a 3-tier classification defining the extent to which baseline air quality conditions can be degraded. Class I Areas have the smallest allowable air quality deterioration limits. Class II Areas allow greater deterioration of air quality, but these areas must maintain air quality conditions better than the Federal air quality standards. Class III Areas allow deterioration of air quality to the level of the Federal ambient air quality standards. The PSD program cumulative pollutant increments above baseline conditions have been established only for NO<sub>2</sub>, SO<sub>2</sub>, and PM<sub>10</sub>. The incremental increases allowed for specific pollutants in Class I and Class II Areas are summarized in Table F-2.3, PSD Increments.

**Table F-2.3: PSD Increments** 

| Pollutant | Averaging Period | Class II PSD<br>Increments | Class I PSD<br>Increments |
|-----------|------------------|----------------------------|---------------------------|
| NO2       | Annual2          | 25                         | 2.5                       |
| PM10      | 241              | 30                         | 8                         |
| PWHU      | Annual           | 17                         | 4                         |
| PM2.5     | 24               | 9                          | 2                         |
| PWI2.3    | Annual           | 4                          | 1                         |
|           | 31               | 512                        | 25                        |
| SO2       | 241              | 91                         | 5                         |
|           | Annual2          | 20                         | 2                         |

<sup>&</sup>lt;sup>1</sup> No more than one exceedance per year.

<sup>&</sup>lt;sup>2</sup> Annual arithmetic mean.

<sup>&</sup>lt;sup>3</sup> Average of annual fourth-highest daily maximum 8-hour average.

<sup>&</sup>lt;sup>4</sup> Category III Incremental standards (increase over established baseline).

# **Regional Haze Regulations**

The CAA requires the EPA to protect visibility conditions in the Class I Areas established under the PSD program, unless the responsible land management agency determines that visibility is not an important air quality value for a particular area. The CAA also requires the development of programs designed to remedy existing visibility impairment in Class I Areas if that visibility impairment results from human-made air pollution. The EPA has identified two general types of visibility impairment at Class I Areas: 1) impairment due to smoke, dust, colored gases, or layered haze attributable to a single stationary emission source or a small group of emission sources; and 2) impairment due to widespread, regionally homogeneous haze resulting from the cumulative emissions of varied emission sources in a region. The PSD permit program addresses visibility impairment from nearby stationary emission sources. Regional haze impacts resulting from cumulative emissions in a region are being addressed through new SIP planning requirements. Colorado submitted a SIP Amendment to the EPA in December of 2007, to address regional haze issues. One of the components of the regional haze SIP is implementation of best available retrofit technology (BART) emission controls on certain categories of existing stationary emission sources, including power plants, cement kilns, and industrial boilers, that were built prior to 1977, if their emissions are reasonably expected to contribute to visibility degradation in Class I Areas. The CAA established an initial list of 158 Class I Areas comprised, primarily, of Wilderness Areas, National Parks, and National Monuments. Five Native American tribal areas have subsequently been added to the list of Class I Areas. The remainder of the country is designated as Class II Areas. No areas have been designated as Class III Areas under the PSD Program. One element of the PSD Permit Program is a review of the extent to which a proposed emission source will impair visibility conditions in Class I Areas.

# **Clean Air Act Conformity Requirements**

Section 176(c) of the CAA requires Federal agencies to ensure that actions undertaken in non-attainment or maintenance areas are consistent with the CAA, and with federally enforceable Air Quality Management Plans. The EPA has promulgated separate rules that establish conformity analysis procedures for highway and mass-transit projects (40 CFR Part 93, Subpart A) and for other (general) Federal agency actions (40 CFR Part 93, Subpart B). General conformity requirements are, potentially, applicable to many Federal agency actions, although they apply only to those aspects of an action that involve ongoing Federal agency responsibility and control over direct or indirect sources of air pollutant emissions when those actions occur within non-attainment or maintenance areas.

The general conformity rule establishes a process that is intended to demonstrate that the proposed Federal action:

- will not cause, or contribute to, new violations of Federal air quality standards;
- will not increase the frequency or severity of existing violations of Federal air quality standards; and
- will not delay the timely attainment of Federal air quality standards.

The general conformity rule applies to Federal actions occurring in non-attainment or maintenance areas when the net change in total direct and indirect emissions of non-attainment pollutants or their precursors exceeds specified thresholds. The emission thresholds that trigger the requirements of the conformity rule are called *de minimis* levels. Emissions associated with stationary sources that are subject to permit programs incorporated into the SIP are not counted against the *de minimis* threshold. The CAA general conformity *de minimis* threshold for PM<sub>10</sub> maintenance areas is 100 tons of PM<sub>10</sub> emissions per year.

Compliance with the conformity rule can be demonstrated in several ways. Compliance is presumed if the net increase in direct and indirect emissions resulting from a Federal action would be less than the relevant *de minimis* level. If net emissions increases exceed the relevant *de minimis* value, a formal conformity determination process must be followed. Federal agency actions subject to the general conformity rule cannot proceed until there is a demonstration of consistency with the SIP through one of the following mechanisms:

- by dispersion modeling analyses demonstrating that direct and indirect emissions resulting from the Federal action will not cause, or contribute to, violations of Federal ambient air quality standards;
- by showing that direct and indirect emissions resulting from the Federal action are specifically identified and accounted for in an approved SIP;
- by showing that direct and indirect emissions associated with the Federal agency action are accommodated within emission forecasts contained in an approved SIP;
- by showing that emissions associated with future conditions will not exceed emissions that would occur from a continuation of historical activity levels;
- by arranging emission offsets to fully compensate for the net emissions increase associated with the action:
- by obtaining a commitment from the relevant air quality management agency to amend the SIP to account for direct and indirect emissions resulting from the Federal agency action; or
- in the case of regional water or wastewater projects, by showing that any population growth accommodated by such projects is consistent with growth projections used in the applicable SIP.

Dispersion modeling analyses can be used to demonstrate conformity only in the case of primary pollutants such as carbon monoxide or directly emitted  $PM_{10}$ . Modeling analyses cannot be used to demonstrate conformity for ozone because the available modeling techniques, generally, are not sensitive to site-specific emissions. No portions of the Planning Area have any Federal non-attainment or maintenance designations.

# **Ambient Air Quality**

Existing air quality data for the Planning Area is summarized in Chapter 3, Affected Environment. The available data indicate that State and Federal ambient air quality standards for criteria pollutants are not exceeded at existing monitoring locations.

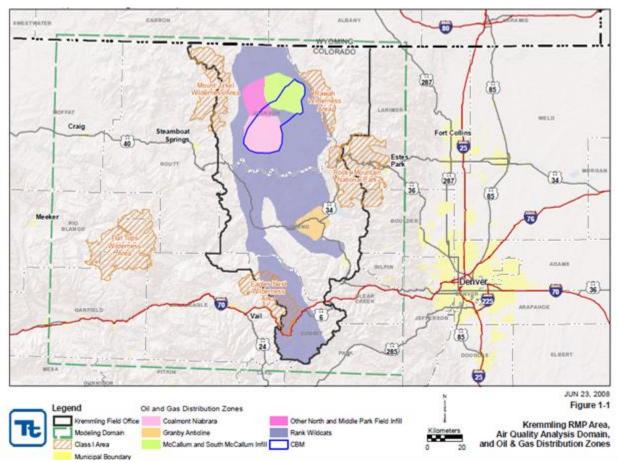
Based upon the BLM's request, the CDPHE provided background air quality data to be used in the Air Quality Assessment for the DRMP/DEIS (Chick 2008). Appropriate background concentrations were provided for areas close to Walden, Colorado, where a portion of the development potential exists. Table F-3.1 lists the background concentrations provided by the CDPHE. Ambient background concentrations demonstrate that the entire Planning Area is in attainment for all applicable NAAQS.

**Table F-3.1 Background Ambient Air Quality Concentrations** 

| Pollutant        | Averaging<br>Period                                                                              | Measured<br>Background<br>Concentration                                                             | Basis for background concentration                                        |
|------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| $PM_{10}$        | 24-hr (2 <sup>nd</sup> Max)<br>Annual                                                            | 23 μg/m <sup>3</sup><br>11 μg/m <sup>3</sup>                                                        | Colowyo Axial, West<br>Site,<br>1997 to1998                               |
| PM <sub>10</sub> | 24-hr (2 <sup>nd</sup> Max)<br>Annual                                                            | 56 μg/m <sup>3</sup> 30 μg/m <sup>3</sup>                                                           | Rifle, Garfield County. (2006 data)                                       |
| $SO_2$           | 3-hr (2 <sup>nd</sup> Max) 24-hr (2 <sup>nd</sup> Max) Annual                                    | 0.009 ppm (23.98<br>μg/m³)<br>0.005 ppm (13.32<br>μg/m³)<br>0.002 ppm (5.33 μg/m³)                  | Unocal, 1983 to 1984                                                      |
| $SO_2$           | 1-hr (99 <sup>th</sup> Percentile) 3-hr (2 <sup>nd</sup> Max) 24-hr (2 <sup>nd</sup> Max) Annual | 0.031 ppm (80.8 μg/m³)<br>0.026 ppm (66.6 μg/m³)<br>0.013 ppm (34.6 μg/m³)<br>0.002 ppm (5.3 μg/m³) | Colorado College,<br>Colorado Springs, El<br>Paso County. (2005-<br>2006) |

**Table F-3.1 Background Ambient Air Quality Concentrations** 

| Pollutant         | Averaging<br>Period                                      | Measured<br>Background<br>Concentration                                  | Basis for background concentration                                |
|-------------------|----------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------|
| NO <sub>2</sub>   | Annual                                                   | 0.005 ppm (3.83 µg/m <sup>3</sup> )                                      | Rural default based on<br>Encana Near Parachute<br>Creek, 2007    |
| NO <sub>2</sub>   | 1-hr (Max)                                               | 0.037 ppm (70.75<br>μg/m3)                                               | Holcim/Golden (2005-<br>2006)                                     |
| СО                | 1-hr (2 <sup>nd</sup> Max)<br>8-hr (2 <sup>nd</sup> Max) | 1 ppm (1,165 μg/m³)<br>1 ppm (1,165 μg/m³)                               | Rural default based on<br>American Soda,<br>Piceance 2003 to 2004 |
| PM <sub>2.5</sub> | 98 <sup>th</sup> Percentile<br>Annual                    | 16 μg/m <sup>3</sup> 6 μg/m <sup>3</sup>                                 | Rural default based on<br>Chatfield State Park,<br>2006           |
| Ozone             | 1-hr (2 <sup>nd</sup> Max)<br>8-hr (4 <sup>th</sup> Max) | 0.058 ppm (116 μg/m³)<br>0.053 ppm (106 μg/m³)                           | Golden Energy<br>Florence, 2005 to 2006                           |
| Ozone             | 1-hr (2 <sup>nd</sup> Max)<br>8-hr (4 <sup>th</sup> Max) | 0.088 ppm (176 μg/m <sup>3</sup> )<br>0.075 ppm (150 μg/m <sup>3</sup> ) | Rocky Mountain<br>National Park, 2004 to<br>2006                  |


### Class I Areas

There are 12 PSD program Class I visibility protection areas in Colorado. Five of Colorado's Class I visibility protection areas are in, or close to, the Planning Area: Rocky Mountain National Park, the Mount Zirkel Wilderness, the Rawah Wilderness, the Eagles Nest Wilderness, and the Flat Tops Wilderness. The Rawah Wilderness Area is located completely in the Planning Area, while Rocky Mountain National Park and the Eagles Nest and Mount Zirkel Wilderness Areas have a portion of the Class I PSD area located in the Planning Area. Table F-3.2 lists the distance and location to the applicable Class I PSD areas, which are approximated from the center of the Planning Area. Figure F-3.1 illustrates the location of the Class I PSD areas relative to the Planning Area.

Table F-3.2 Distance and Direction to Class I Area

| Class I Area                    | Distance from<br>Centerpoint (km) | Direction from<br>Centerpoint | Distance to Centroid of Closest Oil and Gas Distribution Zone (km) |
|---------------------------------|-----------------------------------|-------------------------------|--------------------------------------------------------------------|
| Mount Zirkel Wilderness<br>Area | Adjacent                          | Northwest                     | 17                                                                 |
| Flat Tops Wilderness Area       | 100                               | Southwest                     | 77                                                                 |
| Rawah Wilderness Area           | Inside Planning<br>Area           | Northeast                     | 14                                                                 |
| Rocky Mountain National<br>Park | Adjacent                          | East                          | 28                                                                 |
| Eaglesnest Wilderness Area      | Adjacent                          | Southwest                     | 37                                                                 |





# **Project Emissions**

An emissions inventory was developed for Alternative B in the DRMP/DEIS, and include oxides of nitrogen ( $NO_x$ ), sulfur dioxide ( $SO_2$ ), carbon monoxide (CO), particulate matter less than or equal to 10 microns in size ( $PM_{10}$ ), particulate matter less than or equal to 2.5 microns in size ( $PM_{2.5}$ ), and volatile organic compounds ( $VOC_s$ ) for oil and gas production activities within the Planning Area. In addition, GHG emissions were calculated, including  $CO_2$ ,  $CH_4$ , and  $N_2O$  for oil and gas and  $CH_4$  from enteric fermentation from livestock grazing. Inventories were based upon emission factors from various sources including, but not limited to, manufacturer's data where available, and EPA AP-42, and EPA Gas Research Institute (EPA) emission factors (EPA 1997). (While under contract, EPA Tech prepared an assumptions document and shared it with the KFO staff to ensure that activity assumptions and parameters used in the emissions calculations were appropriate.)

The emissions inventory developed for Alternative B was used to project impacts for Alternatives A, C and D. The overall development in Alternative B was assumed to be greater than any of the other alternatives, and the impacts for the other alternatives was assumed to be less.

### Alternative A

Alternative A, the No Action Alternative, assesses the continuation of current management, assuming no change from current management direction. Emissions are based upon current oil and gas activity in the Planning Area, the projections of the 1991 Colorado Oil and Gas Leasing and Development RMP Amendment/Environmental Impact Statement (EIS), which analyzed oil and gas development in the Planning Area (BLM 1991b).

The 1991 RMP Amendment analyzed the impacts of 108 wells (40 wildcat wells and 68 development wells). The RMP Amendment assumed 19 acres of disturbed area per well for a total disturbed area of 2,044 acres. A the time of the emissions inventory, there were 109 active wells in the Planning Area, which is one more well than the projected 108 wells (BLM 1991b). Seventy-seven of the 109 wells are located on Federal lands. Most of the 109 wells are located in the McCallum fields. The existing wells have a disturbed acreage of approximately 2 to 3 acres per well, as opposed to the projected 19 acres in the 1991 RMP Amendment. Alternative A assumes 1 well per pad, and a disturbed area of 3 acres per well. This scenario assumes the same well pad configuration as the RFD Scenario (BLM 2008r). Each well pad will include one separator, two water tanks, and four production tanks. Electricity will be driven by a gas-fired generator.

### **Alternative B**

The RFD Scenario (BLM 2008r) forecasts the amount of drilling activity that could possibly occur in the 20 year period between 2009 and 2028 on Federal, State, and private lands in the Planning Area. The future anticipated drilling activity outlined in the RFD is 370 oil and gas wells (192 wells on Federal lands and 178 wells on fee lands). It is assumed that the 370 wells will be drilled with vertical well bores over a 20 year period, with the expected average life of a well to be 40 years.

Based upon the RFD, it is assumed that there is one well per well pad (BLM 2008r). The average disturbance per well is estimated to be 8 acres, 4 acres for a drill pad, 2 acres for roads, and 2 acres for other infrastructure. The total potential anticipated surface disturbance at the end of the 20 year period is 4,310 acres. This is based upon an existing surface disturbance area of 1,350 acres and 2,960 new acres of disturbed land. The anticipated disturbance area is the gross acreage. The net acreage would be significantly lower due to the reclamation of plugged and abandoned wells. According to the RFD, the existing 1,350 acres of disturbed land (in 2008) accounts for the plugging and reclamation to date (BLM 2008r). The year of peak overall emissions from oil and gas development activities is estimated to be 2028.

# **Cumulative Analysis**

Far-field cumulative impacts of oil and gas activities will be addressed in a qualitative manner; cumulative sources were not included in the Emissions Inventory. Air Quality results from the DRMP/DEIS are referenced in the cumulative impacts analysis. See Chapter 4, Environmental Consequences.

# **Well Location Assumptions**

Future potential oil and gas activity in the Planning Area is highly speculative, and little is known about the exact well locations for future development. Due to this uncertainty, modeling analysis to predict potential impacts to air quality was not considered a scientifically defensible analysis.

Assumptions about the type of field production (such as oil or gas) for Alternative B were based upon the RFD Scenario (BLM, 2008r). While well locations are speculative, oil and gas 'Distribution Zones' were created to provide the public and the decision-maker with a visual guide of where current activity exists, and a 'best guess' of where potential future might occur. See Tables F-4.1 and F-4.2. It should be noted, however, that the Alternative B Distribution Zone is just a best guess, without a high degree of certainty. As mentioned above, when adequate data becomes available, such as during the project application and environmental analysis stage, it may become necessary to require air quality modeling to

assess the potential impacts resulting from future activities prior to authorization by the BLM.

Table F-4.1 Current Activity (Alternative A) by Distribution Zone

| Field Name                                  | Current Producing Wells |
|---------------------------------------------|-------------------------|
| Coalmont Niobrara                           | 7                       |
| CBM                                         | 0                       |
| Granby Anticline                            | 0                       |
| McCallum and South McCallum Infill          | 84                      |
| Other North and Middle Park<br>Field Infill | 1                       |
| Rank Wildcats                               | 17                      |
| Total                                       | 109                     |

**Table F-4.2 Future Anticipated Activity by Distribution Zone (Alternative B)** 

| Field Name                                  | Current Producing Wells |
|---------------------------------------------|-------------------------|
| Coalmont Niobrara                           | 234                     |
| СВМ                                         | 40                      |
| Granby Anticline                            | 16                      |
| McCallum and South McCallum Infill          | 40                      |
| Other North and Middle Park<br>Field Infill | 20                      |
| Rank Wildcats                               | 20                      |
| Total                                       | 370                     |

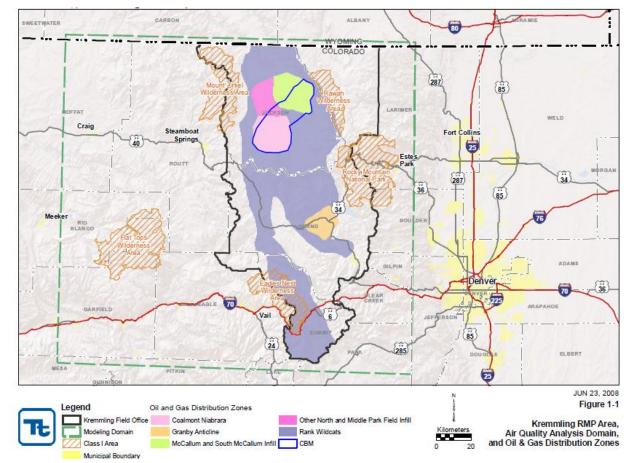



Figure F-4.1 Distribution Zones for Potential Oil and Gas Development

### **Construction Emissions**

Construction emissions for Alternatives A and B included well pad and resource road construction and traffic; rig move and drilling, and associated, traffic; completion and testing, and associated, traffic; and wind erosion during construction activities. Construction emissions for oil and natural gas wells were assumed to be identical.

# **Production Emissions**

Production emissions included combustion engine emissions and fugitive dust resulting from road travel to, and from, well sites; diesel combustion emissions from haul trucks; combustion emissions from well site heaters; condensate storage tank flashing and flashing control; wind erosion from well pad disturbed areas; and emissions from wellhead engines.

### **Emission Calculations**

Tables 5.1 through 5.24 provide a detailed analysis of the emission calculations that were performed for this RMP, and include the equations and assumptions that were used to prepare the Emissions Inventory. Tables 5.21 through 5.24 provide per-well totals for 2009, 2011, 2028, and the total emissions by year, respectively.

*Note:* In the following tables, text in red indicates updated information from that in the DRMP/DEIS.

Converting files to the format of this document may have altered the resolution of the tables, therefore, the tables may not be of the highest quality. A PDF copy of the following tables can be found in the online version of the PRMP/FEIS at: http://www.blm.gov/co/st/en/fo/kfo/planning.html

Alternatively, a copy can be requested from the Kremmling Field Office:

Kremmling Field Office Dennis Gale, PRMP/FEIS Project Manager PO Box 68 2103 East Park Avenue Kremmling, CO 80459 Phone: 970-724-3000

FAX: 970-724-3066 kfo\_webmail@blm.gov 1

| Table 5.1                                                 |                             |                     |                                         |                                             |                                |                     |        |                                   |                                 |         |
|-----------------------------------------------------------|-----------------------------|---------------------|-----------------------------------------|---------------------------------------------|--------------------------------|---------------------|--------|-----------------------------------|---------------------------------|---------|
| Emission Source:                                          | WELL PAD CO                 | NSTRUCTION -        | GENERAL CONST                           | RUCTION ACTIV                               | ITY EMISSION                   | S                   |        |                                   |                                 |         |
| Emission Factor From:                                     | AP-42, Section              | 13.2.3 (EPA 19      | 95)                                     |                                             |                                |                     |        |                                   |                                 |         |
|                                                           | "Heavy Construc             | ction Operations    | "                                       |                                             |                                |                     |        |                                   |                                 |         |
|                                                           | AP-42, Section              | 13.2.2 (EPA 19      | 95)                                     |                                             |                                |                     |        |                                   |                                 |         |
|                                                           | "Revision to fine           | fraction rations    | "                                       |                                             |                                |                     |        |                                   |                                 |         |
|                                                           | TSP=                        | 1.2                 | tons/acre/month                         |                                             |                                |                     |        |                                   |                                 |         |
| Emission Equation:                                        | Emissions (TPY              | ') = EF (tons/ac    | re/month) x Area (ac                    | re) x Equipment                             | Time (hours)                   |                     |        |                                   |                                 |         |
|                                                           |                             |                     |                                         |                                             |                                |                     |        |                                   |                                 |         |
| Area nor Well Ded                                         | Equipment Time per Well Pad | Emission<br>Control | TSP Uncontrolled Emissions per Well Pad | TSP Controlled<br>Emissions per<br>Well Pad | PM <sub>10</sub><br>Conversion | PM <sub>2.5</sub>   | Per V  | ed Emissions<br>Vell Pad<br>b/yr) | Controlled  <br>Per We<br>(lbs) | ell Pad |
| Area per Well Pad<br>(acre)                               | (hours)                     | Efficiency          | (lbs/year)                              | (lbs/year)                                  | Factor <sup>1</sup>            | Factor <sup>1</sup> | PM10   | PM2.5                             | PM10                            | PM2.5   |
| 8                                                         | 70                          | 80%                 | 1841.10                                 | 1472.88                                     | 0.25                           | 0.15                | 460.27 | 69.04                             | 368.22                          | 55.23   |
| Notes:                                                    |                             |                     |                                         |                                             |                                |                     |        |                                   |                                 |         |
| <sup>1</sup> PM <sub>10</sub> = 0.25*TSP; PM <sub>2</sub> | $_{2.5} = 0.15^* PM_{10}.$  | Conversion factor   | or from AP-42 13.2.2                    |                                             |                                |                     |        |                                   |                                 |         |
| Construction activity inclu                               |                             |                     |                                         |                                             | pad.                           |                     |        |                                   |                                 |         |
| •                                                         |                             |                     |                                         |                                             |                                |                     |        |                                   |                                 |         |

| Table 5.2                                          |                  |                                      |                 |                 |          |                      |               |            |          |          |              |            |              |            |
|----------------------------------------------------|------------------|--------------------------------------|-----------------|-----------------|----------|----------------------|---------------|------------|----------|----------|--------------|------------|--------------|------------|
| Emission Source:                                   | WELL PAD         | CONSTRU                              | CTION - VE      | HICLE ROAD      | DUST EMI | SSIONS               |               |            |          |          |              |            |              |            |
|                                                    |                  |                                      |                 |                 |          |                      |               |            |          |          |              |            |              |            |
| Emission Factor From:                              | AP-42 Sec        |                                      |                 |                 |          |                      |               |            |          |          |              |            |              |            |
|                                                    | unpaved R        | oads - Indus                         | strial Roads"   |                 |          |                      |               |            |          |          |              |            |              |            |
| Emission Factor ⊨quaτιon:                          | E = k x (s/1     | 2) <sup>a</sup> x (W/3) <sup>b</sup> | )               |                 |          |                      |               |            |          |          |              |            |              |            |
| Where:                                             | E =              | Size-specif                          | fic emission    | factor (lb/VMT  | )        |                      |               |            |          |          |              |            |              |            |
|                                                    |                  |                                      | aterial silt co |                 |          |                      |               |            |          |          |              |            |              |            |
|                                                    | W =              | Mean vehic                           | le weight (to   | ns)             |          |                      |               |            |          |          |              |            |              |            |
|                                                    |                  |                                      |                 | ticle size mult | iplier   |                      |               |            |          |          |              |            |              |            |
|                                                    |                  | Empirical of                         |                 |                 |          |                      |               |            |          |          |              |            |              |            |
|                                                    |                  | Empirical of                         |                 |                 |          |                      |               |            |          |          |              |            |              |            |
|                                                    |                  |                                      | ( DM40          |                 |          |                      |               |            |          |          |              |            |              |            |
| Data:                                              | k =              |                                      | for PM10        |                 |          |                      |               |            |          |          |              |            |              |            |
|                                                    | k =              |                                      | for PM2.5       | - I DN40.5      |          |                      |               |            |          |          |              |            |              |            |
|                                                    | a=               |                                      | for PM10 ar     |                 |          |                      |               |            |          |          |              |            |              |            |
|                                                    | b=               | 0.45                                 | for PM10 ar     | na PIVI2.5      |          |                      |               |            |          |          |              |            |              |            |
|                                                    | Number of        |                                      |                 |                 | Average  |                      | Vehicle Miles |            | PM10     | PM2.5    | Uncontrolled | Controlled | Uncontrolled | Controlled |
|                                                    | Round            |                                      |                 | Total           | Vehicle  | Silt                 | Travelled per |            | Emission | Emission | PM10         | PM10       | PM2.5        | PM2.5      |
|                                                    | Trips per        | Days on                              | Number of       | Number of       | Weight   | Content <sup>1</sup> | Vehicle       | Control    | Factor   | Factor   | Emissions    | Emissions  | Emissions    | Emissions  |
| Vehicle                                            | Day              | Location                             | Vehicles        | Round Trips     | (tons)   | (%)                  | (VMT/vehicle) | Efficiency | (lb/VMT) | (lb/VMT) | (lb/pad)     | (lb/pad)   | (lb/pad)     | (lb/pad)   |
| low boy hauler                                     | 5                | 2                                    | 1               | 10              | 40       | 24                   | 6             | 80%        | 8.98     | 0.90     | 538.76       | 431.00     | 53.88        | 43.10      |
| gravel hauler                                      | 10               | 3                                    | 3               | 90              | 26       | 24                   | 6             | 80%        | 7.40     | 0.74     | 3994.34      | 3195.48    | 399.43       | 319.55     |
| water truck (road dust control)                    | 6                | 3                                    | 1               | 18              | 26       | 24                   | 6             | 80%        | 7.40     | 0.74     | 798.87       | 639.10     | 79.89        | 63.91      |
| light duty vehicles (employee access)              | 1                | 7                                    | 2               | 14              | 4.6      | 24                   | 6             | 80%        | 3.39     | 0.34     | 284.99       | 227.99     | 28.50        | 22.80      |
|                                                    |                  |                                      |                 |                 |          |                      |               |            |          | TOTAL    | 5616.96      | 4493.57    | 561.70       | 449.36     |
| <sup>1</sup> Silt content from AP-42 Table 13.2.2- | 1 for a freebly  | , graded bar                         | ıl road         |                 |          |                      |               |            |          |          |              |            |              |            |
| OIL COILCIL HOIH AF "42 TADIE 13.2.2"              | ı ıvı a iitəlliy | grautu Hal                           | ıı ıvau.        |                 |          |                      |               |            |          |          |              |            |              |            |

| Proposed Resource Management Plan and Final Environmental Impact Statement |
|----------------------------------------------------------------------------|
|----------------------------------------------------------------------------|

| Table 5.3                                       |               |               |                      |                |                 |                          |                              |                              |                        |                 |            |                  |               |            |           |        |
|-------------------------------------------------|---------------|---------------|----------------------|----------------|-----------------|--------------------------|------------------------------|------------------------------|------------------------|-----------------|------------|------------------|---------------|------------|-----------|--------|
| Emission Source:                                | WELL PAD C    | CONSTRUCT     | TION - HEAV          | Y EQUIPM       | ENT EXHA        | JST EMISS                | IONS                         |                              |                        |                 |            |                  |               |            |           |        |
|                                                 |               |               |                      |                |                 |                          |                              |                              |                        |                 |            |                  |               |            |           |        |
| Emission Factor From:                           | AP-42, Volum  |               |                      |                |                 |                          |                              |                              |                        |                 |            |                  |               |            |           |        |
|                                                 | "Emissions F  | actors for Co | onstruction E        | quipment"      |                 |                          |                              |                              |                        |                 |            |                  |               |            |           |        |
| Emission Equation:                              | Emissions (TI | PY) = grams   | pollutant/ye         | ear / 453.59   | grams / 200     | 00 lbs x Loa             | d Factor                     |                              |                        |                 |            |                  |               |            |           |        |
|                                                 | SO2 Emission  | ns (TPY) = g  | grams SO2/y          | ear / 453.5    | 9 grams / 20    | 000 lbs x Lo             | ad Factor x                  | Ultra Low S                  | ulfur Adjustm          | ent             |            |                  |               |            |           |        |
|                                                 |               |               |                      |                |                 |                          |                              |                              |                        |                 |            |                  |               |            |           |        |
|                                                 |               |               |                      |                |                 |                          |                              |                              |                        |                 |            |                  |               |            |           |        |
|                                                 |               |               |                      |                | Emission F      | actors <sup>1</sup> (g/h |                              |                              |                        |                 |            |                  |               |            |           |        |
| Equipment                                       | CO            | $NO_x$        | PM <sub>10</sub>     | $PM_{2.5}^{2}$ | SO <sub>2</sub> | VOC                      | CO <sub>2</sub> <sup>6</sup> | CH <sub>4</sub> <sup>7</sup> | $N_2O^7$               | Form.           | Benzene    | Toluene          | Xylene        |            |           |        |
| Dozer <sup>5</sup>                              | 2.15          | 7.81          | 0.692                | 0.692          | 0.851           | 0.75                     | 521.6                        | 0.0252                       | 0.0155                 |                 | 0.002962   |                  |               |            |           |        |
| Grader                                          | 2.45          | 7.46          | 0.789                | 0.789          | 0.901           | 0.55                     | 521.6                        | 0.0252                       | 0.0155                 |                 |            | 0.001299         |               |            |           |        |
| Motor Grader                                    | 2.45          | 7.46          | 0.789                | 0.789          | 0.901           | 0.55                     | 521.6                        | 0.0252                       | 0.0155                 |                 |            | 0.001299         |               |            |           |        |
| Backhoe                                         | 2.45          | 7.46          | 0.789                | 0.789          | 0.901           | 0.55                     | 521.6                        | 0.0252                       | 0.0155                 | 0.003747        | 0.002962   | 0.001299         | 0.000905      |            |           |        |
|                                                 |               |               |                      |                |                 |                          |                              |                              |                        |                 |            |                  |               |            |           |        |
|                                                 | Engine        | Operating     |                      |                |                 |                          |                              |                              |                        |                 |            |                  |               |            |           |        |
|                                                 | Horsepower    | Load          | Durations            |                |                 |                          |                              | P                            | olluntant Em           | issions (lbs    | /well pad) |                  |               |            |           |        |
| Equipment                                       | (hp)          | Factor        | (hours) <sup>3</sup> | CO             | $NO_x$          | PM <sub>10</sub>         | $PM_{2.5}$                   | SO <sub>2</sub> <sup>4</sup> | VOC                    | CO <sub>2</sub> | CH₄        | N <sub>2</sub> O | Form.         | Benzene    | Toluene   | Xylene |
| bulldozer                                       | 300           | 0.4           | 70                   | 39.82          | 144.63          | 12.82                    | 12.82                        | 0.47                         | 13.89                  | 9660.0          | 0.47       | 0.29             | 0.07          | 0.05       | 0.02      | 0.02   |
| grader                                          | 165           | 0.4           | 70                   | 24.95          | 75.98           | 8.04                     | 8.04                         | 0.28                         | 5.60                   | 5313.0          | 0.26       | 0.16             | 0.04          | 0.03       | 0.01      | 0.01   |
| motor grader                                    | 165           | 0.4           | 70                   | 24.95          | 75.98           | 8.04                     | 8.04                         | 0.28                         | 5.60                   | 5313.0          | 0.26       | 0.16             | 0.04          | 0.03       | 0.01      | 0.01   |
| backhoe                                         | 100           | 0.4           | 70                   | 15.12          | 46.05           | 4.87                     | 4.87                         | 0.17                         | 3.40                   | 3220.0          | 0.16       | 0.10             | 0.02          | 0.02       | 0.01      | 0.01   |
|                                                 |               |               | TOTAL                | 104.85         | 342.65          | 33.76                    | 33.76                        | 1.19                         | 28.49                  | 23506.0         | 1.13       | 0.70             | 0.17          | 0.13       | 0.06      | 0.04   |
| Notes:                                          |               |               |                      |                |                 |                          |                              |                              |                        |                 |            |                  |               |            |           |        |
| <sup>1</sup> AP-42, Volume II - Mobile          | Sources (EDA  | 1085) "Emi    | ssions Fact          | ore for Cons   | truction Fau    | inment"                  |                              |                              |                        |                 |            |                  |               |            |           |        |
| <sup>2</sup> PM <sub>2.5</sub> emissions assume |               |               |                      | JI3 101 CO113  | struction Eqt   | принени                  |                              |                              |                        |                 |            |                  |               |            |           |        |
| <sup>3</sup> Assumes 10 hours per da            |               |               |                      |                |                 |                          |                              |                              |                        |                 |            |                  |               |            |           |        |
| <sup>4</sup> Ultra Low Sulfur adjustment        | , ,           | 5 ppm Ultra   | l ow Sulfur d        | iesel fuel si  | ılfur content   | compared t               | o 500 ppm <i>(</i>           | 0 05 percen                  | t) #2 diesel fi        | uel sulfur co   | ntent      |                  |               |            |           |        |
| <sup>5</sup> Emission factor for track          |               | ppin Ollia    | Low Canara           | 10001 1001 00  | and contont     | oompared t               | o ooo ppiii (                | o.oo poroon                  | , " <u>-</u> alogor ic | Joi Gallal GO   | inoin.     |                  |               |            |           |        |
| <sup>6</sup> From AP-42 Section 3-3             | • •           | nission Fact  | ors for Linco        | ntrolled Gar   | soline and D    | iesel Indust             | rial Engines                 |                              |                        |                 |            |                  |               |            |           |        |
| <sup>7</sup> Compendium of Greenhou             |               |               |                      |                |                 |                          |                              |                              | of 0.08 a/L            | of diagol fuc   | l Diocol d | oncity 850       | a/I · hooting | unduo 10 2 | 00 Rtu/lb |        |

Volume Three

| NOx<br>6.49<br>1.18<br>0.651 | PM10 n/a n/a n/a   |                                                               | 59 grams / 2<br>mission Fac<br>SO2<br>0.32<br>n/a |                                        | CO <sub>2</sub> <sup>5</sup><br>1700    | CH <sub>4</sub> <sup>6</sup><br>0.070                                                                                                                                                                                                                                                                                                                                                                                                                  | N <sub>2</sub> O <sup>7</sup> 0.0432                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Formaldehyde <sup>8</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Xylene <sup>8</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                  |
|------------------------------|--------------------|---------------------------------------------------------------|---------------------------------------------------|----------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| NOx<br>6.49<br>1.18          | PM10<br>n/a<br>n/a | En<br>PM2.5 <sup>4</sup><br>n/a<br>n/a                        | mission Fac<br>SO2<br>0.32                        | tors (g/VM <sup>-</sup><br>VOC<br>4.82 | CO <sub>2</sub> <sup>5</sup><br>1700    |                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                  |
| 6.49<br>1.18                 | n/a<br>n/a         | PM2.5 <sup>4</sup> n/a n/a                                    | SO2<br>0.32                                       | VOC<br>4.82                            | CO <sub>2</sub> <sup>5</sup><br>1700    |                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                  |
| 6.49<br>1.18                 | n/a<br>n/a         | PM2.5 <sup>4</sup> n/a n/a                                    | SO2<br>0.32                                       | VOC<br>4.82                            | CO <sub>2</sub> <sup>5</sup><br>1700    |                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                  |
| 6.49<br>1.18                 | n/a<br>n/a         | n/a<br>n/a                                                    | 0.32                                              | 4.82                                   | 1700                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                  |
| 1.18                         | n/a                | n/a                                                           |                                                   |                                        |                                         | 0.070                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0432                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                  |
|                              |                    |                                                               | n/a                                               | 0.74                                   |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0085                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.00371                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0026                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                  |
|                              |                    |                                                               | n/a                                               | 0.74                                   |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                  |
| 0.651                        | n/a                | n/a                                                           |                                                   |                                        | 230                                     | 0.018                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0505                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0286                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0148                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.00371                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0026                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                  |
| 0.651                        | n/a                | n/a                                                           |                                                   |                                        |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                  |
|                              |                    |                                                               | n/a                                               | 0.562                                  | 330                                     | 0.119                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0541                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0085                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0151                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.00371                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0026                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                  |
|                              |                    |                                                               |                                                   |                                        |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                  |
|                              |                    |                                                               |                                                   |                                        |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                  |
|                              |                    | Number of                                                     | Round                                             |                                        |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                  |
|                              |                    | Round                                                         | Trip                                              |                                        |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                  |
| Days on                      | Number of          | Trips Per                                                     | Distance                                          | VMT                                    |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Pollutant E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | missions (lbs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | s/well pad)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                  |
| Location                     | Vehicles           | Day                                                           | (mi)                                              | (mi)                                   | CO                                      | NOx                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PM10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PM2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SO2 <sup>10</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | VOC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CO2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CH4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | N2O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Formaldehyde                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Benzene                                                                                                                      | Toluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Xylene                                                                                                                                           |
| 2                            | 1                  | 5                                                             | 6                                                 | 60                                     | 2.26                                    | 0.86                                                                                                                                                                                                                                                                                                                                                                                                                                                   | na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 224.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0093                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0057                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0011                                                                                                                       | 0.0005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0003                                                                                                                                           |
| 3                            | 3                  | 10                                                            | 6                                                 | 540                                    | 20.31                                   | 7.73                                                                                                                                                                                                                                                                                                                                                                                                                                                   | na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2,023.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0837                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0515                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0101                                                                                                                       | 0.0044                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0031                                                                                                                                           |
|                              |                    |                                                               |                                                   |                                        |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                  |
| 3                            | 1                  | 6                                                             | 6                                                 | 108                                    | 4.06                                    | 1.55                                                                                                                                                                                                                                                                                                                                                                                                                                                   | na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 404.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0167                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0020                                                                                                                       | 0.0009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0006                                                                                                                                           |
|                              |                    |                                                               |                                                   |                                        |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                  |
| 7                            | 1                  | 1                                                             | 6                                                 | 42                                     | 0.23                                    | 0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                   | na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 21.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0047                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0026                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0014                                                                                                                       | 0.0003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0002                                                                                                                                           |
|                              |                    |                                                               |                                                   |                                        |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                  |
| 7                            | 1                  | 1                                                             | 6                                                 | 42                                     | 0.89                                    | 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                   | na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 30.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0014                                                                                                                       | 0.0003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0002                                                                                                                                           |
|                              |                    |                                                               |                                                   | TOTAL                                  | 27.76                                   | 10.30                                                                                                                                                                                                                                                                                                                                                                                                                                                  | na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2,705.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.1224                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0772                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0160                                                                                                                       | 0.0065                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0045                                                                                                                                           |
|                              |                    |                                                               |                                                   |                                        |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                  |
| H "Heaw [                    | Outy Diesel        | Trucks" high                                                  | h altitude "a                                     | aged" with 5                           | 0 000 miles                             | service 2                                                                                                                                                                                                                                                                                                                                                                                                                                              | 001+ model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | l vear (FPA 1995                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                  |
|                              | Location 2 3 7 7   | Location Vehicles  2 1 3 3 3 1 7 1 7 1 H, "Heavy Duty Diesel" | 2 1 5<br>3 3 10<br>3 1 6<br>7 1 1<br>7 1 1        | Location   Vehicles   Day   (mi)       | Location   Vehicles   Day   (mi)   (mi) | Location         Vehicles         Day         (mi)         (mi)         CO           2         1         5         6         60         2.26           3         3         10         6         540         20.31           3         1         6         6         108         4.06           7         1         1         6         42         0.23           7         1         1         6         42         0.89           TOTAL         27.76 | Location         Vehicles         Day         (mi)         (mi)         CO         NOx           2         1         5         6         60         2.26         0.86           3         3         10         6         540         20.31         7.73           3         1         6         6         108         4.06         1.55           7         1         1         6         42         0.23         0.11           7         1         1         6         42         0.89         0.06           TOTAL         27.76         10.30 | Location         Vehicles         Day         (mi)         (mi)         CO         NOx         PM10           2         1         5         6         60         2.26         0.86         na           3         3         10         6         540         20.31         7.73         na           3         1         6         6         108         4.06         1.55         na           7         1         1         6         42         0.23         0.11         na           7         1         1         6         42         0.89         0.06         na           TOTAL         27.76         10.30         na | Location         Vehicles         Day         (mi)         (mi)         CO         NOx         PM10         PM2.5           2         1         5         6         60         2.26         0.86         na         na           3         1         6         540         20.31         7.73         na         na           3         1         6         6         108         4.06         1.55         na         na           7         1         1         6         42         0.23         0.11         na         na           7         1         1         6         42         0.89         0.06         na         na           7         1         1         6         42         0.89         0.06         na         na           7         1         1         6         42         0.89         0.06         na         na           7         1         27.76         10.30         na         na         na | Location         Vehicles         Day         (mi)         (mi)         CO         NOx         PM10         PM2.5         SO2 <sup>10</sup> 2         1         5         6         60         2.26         0.86         na         na         0.001           3         3         10         6         540         20.31         7.73         na         na         0.011           3         1         6         6         108         4.06         1.55         na         na         0.002           7         1         1         6         42         0.23         0.11         na         na         na           7         1         1         6         42         0.89         0.06         na         na         na | Location         Vehicles         Day         (mi)         (mi)         CO         NOx         PM10         PM2.5         SO2 <sup>10</sup> VOC           2         1         5         6         60         2.26         0.86         na         na         0.001         0.64           3         3         10         6         540         20.31         7.73         na         na         0.011         5.74           3         1         6         6         108         4.06         1.55         na         na         0.002         1.15           7         1         1         6         42         0.23         0.11         na         na         na         0.07           7         1         1         6         42         0.89         0.06         na         na         na         0.015         7.64           TOTAL         27.76         10.30         na         na         0.015         7.64 | Location         Vehicles         Day         (mi)         CO         NOx         PM10         PM2.5         SO2 <sup>10</sup> VOC         CO2           2         1         5         6         60         2.26         0.86         na         na         0.001         0.64         224.87           3         3         10         6         540         20.31         7.73         na         na         0.011         5.74         2,023.85           3         1         6         6         108         4.06         1.55         na         na         0.002         1.15         404.77           7         1         1         6         42         0.23         0.11         na         na         na         0.07         21.30           7         1         1         6         42         0.89         0.06         na         na         na         0.05         30.56           7         1         1         6         42         0.89         0.06         na         na         na         0.015         7.64         2,705.35 | Location         Vehicles         Day         (mi)         (mi)         CO         NOx         PM10         PM2.5         SO2 <sup>10</sup> VOC         CO2         CH4           2         1         5         6         60         2.26         0.86         na         na         0.001         0.64         224.87         0.0093           3         1         6         540         20.31         7.73         na         na         0.011         5.74         2,023.85         0.0837           3         1         6         6         108         4.06         1.55         na         na         0.002         1.15         404.77         0.0167           7         1         1         6         42         0.23         0.11         na         na         na         0.07         21.30         0.0016           7         1         1         6         42         0.89         0.06         na         na         na         0.015         7.64         2,705.35         0.1224 | Location         Vehicles         Day         (mi)         (mi)         CO         NOx         PM10         PM2.5         SO2 <sup>10</sup> VOC         CO2         CH4         N2O           2         1         5         6         60         2.26         0.86         na         na         0.001         0.64         224.87         0.0093         0.0057           3         1         6         540         20.31         7.73         na         na         0.011         5.74         2,023.85         0.0837         0.0515           3         1         6         6         108         4.06         1.55         na         na         0.002         1.15         404.77         0.0167         0.0103           7         1         1         6         42         0.23         0.11         na         na         na         0.07         21.30         0.0016         0.0047           7         1         1         6         42         0.89         0.06         na         na         na         0.05         30.56         0.0110         0.0050           7         1         1         6         42         0.89         0.06 | Location   Vehicles   Day   (mi)   (mi)   CO   NOx   PM10   PM2.5   SO2 <sup>10</sup>   VOC   CO2   CH4   N2O   Formaldehyde | Location         Vehicles         Day         (mi)         (mi)         CO         NOx         PM10         PM2.5         SO2 <sup>10</sup> VOC         CO2         CH4         N2O         Formaldehyde         Benzene           2         1         5         6         60         2.26         0.86         na         na         0.001         0.64         224.87         0.0093         0.0057         0.0014         0.0011           3         1         6         540         20.31         7.73         na         na         0.011         5.74         2,023.85         0.0837         0.0515         0.0127         0.0101           3         1         6         6         108         4.06         1.55         na         na         0.002         1.15         404.77         0.0167         0.0103         0.0025         0.0020           7         1         1         6         42         0.23         0.11         na         na         na         0.07         21.30         0.0016         0.0047         0.0026         0.0014           7         1         1         6         42         0.89         0.06         na         na         na <td< td=""><td>  Location   Vehicles   Day   (mi)   (mi)   CO   NOx   PM10   PM2.5   SO2<sup>10</sup>   VOC   CO2   CH4   N2O   Formaldehyde   Benzene   Toluene    </td></td<> | Location   Vehicles   Day   (mi)   (mi)   CO   NOx   PM10   PM2.5   SO2 <sup>10</sup>   VOC   CO2   CH4   N2O   Formaldehyde   Benzene   Toluene |

<sup>&</sup>lt;sup>2</sup> AP-42, Volume II - Mobile Sources, Appendix H, "Light Duty Diesel Trucks" high altitude, "aged" with 50,000 miles service, 1990+ model year for NOx, 1984+ model year for CO and HC (EPA 1995).

Table 5.4

<sup>&</sup>lt;sup>3</sup> AP-42, Volume II - Mobile Sources, Appendix H, "Light Duty Gasoline Trucks I" high altitude, "aged" with 50,000 miles service, 1998+ model year (EPA 1995).

<sup>&</sup>lt;sup>4</sup> PM2.5 emissions assumed equal to PM10 emissions (no PM emission factors avialable from EPA).

<sup>&</sup>lt;sup>5</sup> Compendium of Greenhouse Gas Emission Methodologies for the Oil and Gas Industry, Table 4-11 (HDDV diesel non-semi truck, LDGT average gasoline car, LDDV large diesel car), CO2 Mobile Source Emission Factors, American Petroleum Institute (2004).

6 Compendium of Greenhouse Gas Emission Methodologies for the Oil and Gas Industry for CH4, Table 4-9 (HDDV moderate control, LDGT oxidation catalyst, LDDT moderate control), Mobile Source Combustion Emission Factors, Table 4-10 (HDDV Diesel heavy truck, LDGT Gasoline light truck, LDDT Diesel light truck), Default Fuel Economy Factors for Different Types of Mobile Sources, American Petroleum Institute (2004).

<sup>7</sup> Compendium of Greenhouse Gas Emission Methodologies for the Oil and Gas Industry for N2O, Table 4-9 (HDDV moderate control, LDGT oxidation catalyst, LDDT moderate control), Mobile Source Combustion Emission Factors, Table 4-10 (HDDV Diesel heavy truck, LDGT Gasoline light truck, LDDT Diesel light truck), Default Fuel Economy Factors for Different Types of Mobile Sources, American Petroleum Institute (2004).

AP-42, Section 3.3, "Gasoline and Diesel Industrial Engines. Table 3.3-2, "Speciated Organic Compound Emission Factors for Uncontrolled Diesel Engines"

<sup>&</sup>lt;sup>9</sup> For light duty vehicles (pickup trucks), 60 percent would be diesel-powered, and 40 percent would be gas.

<sup>10</sup> Included in the Pollutant Emissions is the Ultra Low Sulfur adjustment based on 15 ppm Ultra Low Sulfur diesel fuel sulfur content compared to 500 ppm (0.05 percent) #2 diesel fuel sulfur content. (15/500=0.03)

| Table 5.5                                          |                         |                      |                 |               |         |                      |               |            |          |          |              |              |            |            |
|----------------------------------------------------|-------------------------|----------------------|-----------------|---------------|---------|----------------------|---------------|------------|----------|----------|--------------|--------------|------------|------------|
| Emission Source:                                   | WELL CONST              | RUCTION - V          | EHICLE RO       | DAD DUST E    | MISSION | S                    |               |            |          |          |              |              |            |            |
|                                                    |                         |                      |                 |               |         |                      |               |            |          |          |              |              |            |            |
| Emission Factor From:                              | AP-42, Section          |                      |                 |               |         |                      |               |            |          |          |              |              |            |            |
|                                                    | "Unpaved Roads          | s" – Industria       | al roads        |               |         |                      |               |            |          |          |              |              |            |            |
| Explanation:                                       |                         |                      |                 |               |         |                      |               |            |          |          |              |              |            |            |
| Emission Factor Equation:                          | $E = k \times (s/12)^a$ | x (W/3) <sup>b</sup> |                 |               |         |                      |               |            |          |          |              |              |            |            |
| Where:                                             | E =                     | Size-specifi         | c emission f    | actor (lb/VM  | T)      |                      |               |            |          |          |              |              |            |            |
|                                                    | s =                     | Surface ma           | terial silt cor | ntent (%)     |         |                      |               |            |          |          |              |              |            |            |
|                                                    | W =                     | Mean vehic           | le weight (to   | ns)           |         |                      |               |            |          |          |              |              |            |            |
|                                                    | k =                     | Empirical c          | onstant, part   | icle size mul | tiplier |                      |               |            |          |          |              |              |            |            |
|                                                    | a =                     | Empirical c          | onstant         |               |         |                      |               |            |          |          |              |              |            |            |
|                                                    | b =                     | Empirical c          | onstant         |               |         |                      |               |            |          |          |              |              |            |            |
|                                                    |                         |                      |                 |               |         |                      |               |            |          |          |              |              |            |            |
| Data:                                              | k =                     | 1.5                  | for PM10        |               |         |                      |               |            |          |          |              |              |            |            |
|                                                    | k =                     |                      | for PM2.5       |               |         |                      |               |            |          |          |              |              |            |            |
|                                                    | a=                      | 0.9                  | for PM10 a      | nd PM2.5      |         |                      |               |            |          |          |              |              |            |            |
|                                                    | b=                      | 0.45                 | for PM10 a      | nd PM2.5      |         |                      |               |            |          |          |              |              |            |            |
|                                                    |                         |                      |                 |               |         |                      |               |            |          |          |              |              |            |            |
|                                                    |                         |                      |                 | Total         |         |                      |               |            |          |          |              |              |            |            |
|                                                    |                         |                      |                 | Number of     | Mean    |                      | Vehicle Miles |            | PM10     | PM2.5    | Uncontrolled | Uncontrolled | Controlled | Controlled |
|                                                    | Number of               |                      |                 | Round         | Vehicle | Silt                 | Travelled per |            | Emission | Emission | PM10         | PM2.5        | PM10       | PM2.5      |
|                                                    | Round Trips             | Days on              | Number of       | Trips (per    | Weight  | Content <sup>1</sup> | Vehicle       | Control    | Factor   | Factor   | Emissions    | Emissions    | Emissions  | Emissions  |
| Vehicle                                            | per Day                 | Location             | Vehicles        | year?)        | (tons)  | (%)                  | (VMT/vehicle) | Efficiency | (lb/VMT) | (lb/VMT) | (lbs/pad)    | (lbs/pad)    | (lbs/pad)  | (lbs/pad)  |
| Fuel tanker                                        | 1                       | 1                    | 1               | 1             | 40      | 24                   | 6             | 80%        | 8.98     | 0.90     | 0.03         | 0.00         | 0.02       | 0.00       |
| Logging truck                                      | 1                       | 2                    | 1               | 2             | 26      | 24                   | 6             | 80%        | 7.40     | 0.74     | 0.04         | 0.00         | 0.04       | 0.00       |
| Cementer truck                                     | 1                       | 2                    | 1               | 2             | 40      | 24                   | 6             | 80%        | 8.98     | 0.90     | 0.05         | 0.01         | 0.04       | 0.00       |
| Cement supply truck                                | 1                       | 2                    | 2               | 4             | 40      | 24                   | 6             | 80%        | 8.98     | 0.90     | 0.11         | 0.01         | 0.09       | 0.01       |
| Casing crew                                        | 1                       | 2                    | 1               | 2             | 6       | 24                   | 6             | 80%        | 3.82     | 0.38     | 0.02         | 0.00         | 0.02       | 0.00       |
| Laydown machine                                    | 1                       | 2                    | 1               | 2             | 26      | 24                   | 6             | 80%        | 7.40     | 0.74     | 0.04         | 0.00         | 0.04       | 0.00       |
| Water truck                                        | 2                       | 37                   | 1               | 74            | 40      | 24                   | 6             | 80%        | 8.98     | 0.90     | 1.99         | 0.20         | 1.59       | 0.16       |
| Light duty vehicles (trips for bits)               | 2                       | 5                    | 1               | 10            | 6       | 24                   | 6             | 80%        | 3.82     | 0.38     | 0.11         | 0.01         | 0.09       | 0.01       |
| Light duty vehicles (employee access)              | 1                       | 37                   | 11              | 407           | 4.6     | 24                   | 6             | 80%        | 3.39     | 0.34     | 4.14         | 0.41         | 3.31       | 0.33       |
| Rig hauler                                         | 5                       | 2                    | 1               | 10            | 40      | 24                   | 6             | 80%        | 8.98     | 0.90     | 0.27         | 0.03         | 0.22       | 0.02       |
| TOTAL                                              |                         |                      |                 |               |         |                      |               |            |          |          |              |              | 5.46       | 0.55       |
|                                                    |                         |                      |                 |               |         |                      |               |            |          |          |              |              |            |            |
| <sup>1</sup> Silt content from AP-42 Table 13.2.2- | 1 for a freshly gra     | aded haul ro         | ad.             |               |         |                      |               |            |          |          |              |              |            |            |

| Table 5.6                      |           |                        |            |                    |              |              |                      |                  |                  |                           |                      |                      |                     |         |        |                 |        |         |        |
|--------------------------------|-----------|------------------------|------------|--------------------|--------------|--------------|----------------------|------------------|------------------|---------------------------|----------------------|----------------------|---------------------|---------|--------|-----------------|--------|---------|--------|
| Emission Source:               | WELL CO   | NSTRUCTIO              | N - VEHICL | E EXHAUST          | EMISSIONS    |              |                      |                  |                  |                           |                      |                      |                     |         |        |                 |        |         |        |
|                                |           |                        |            |                    |              |              |                      |                  |                  |                           |                      |                      |                     |         |        |                 |        |         |        |
| Emission Equation:             | Emissions | (TPY) = gran           | ms/VMT x V | MT / 453.59        | grams / 2000 | lbs          |                      |                  |                  |                           |                      |                      |                     |         |        |                 |        |         |        |
|                                |           |                        |            |                    |              |              |                      |                  |                  |                           |                      |                      |                     |         |        |                 |        |         |        |
|                                |           |                        |            |                    | Emission     | Factors (g/V | MT) <sup>1,2,3</sup> |                  |                  |                           |                      |                      |                     |         |        |                 |        |         |        |
| Equipment                      | CO        | NOx                    | PM10       | PM2.5 <sup>4</sup> | SO2          | VOC          | CO2 <sup>5</sup>     | CH4 <sup>6</sup> | N2O <sup>7</sup> | Formaldehyde <sup>8</sup> | Benzene <sup>8</sup> | Toluene <sup>8</sup> | Xylene <sup>8</sup> |         |        |                 |        |         |        |
| HD Diesel Engine Trucks (HDDV) | 17.06     | 6.49                   | n/a        | n/a                | 0.32         | 4.82         | 1700                 | 0.070            | 0.0432           | 0.0107                    | 0.0085               | 0.00371              | 0.0026              |         |        |                 |        |         |        |
| LD Diesel Trucks (60 percent)9 |           |                        |            |                    |              |              |                      |                  |                  |                           |                      |                      |                     |         |        |                 |        |         |        |
| (LDDV)                         | 2.53      | 1.18                   | n/a        | n/a                | n/a          | 0.74         | 230                  | 0.018            | 0.0505           | 0.0286                    | 0.0148               | 0.00371              | 0.0026              |         |        |                 |        |         |        |
| LD Gas Trucks (40 percent)     |           |                        |            |                    |              |              |                      |                  |                  |                           |                      |                      |                     |         |        |                 |        |         |        |
| (LDGV)                         | 9.659     | 0.651                  | n/a        | n/a                | n/a          | 0.562        | 330                  | 0.119            | 0.0541           | 0.0085                    | 0.0151               | 0.00371              | 0.0026              |         |        |                 |        |         |        |
|                                |           |                        |            | Number of          |              |              |                      |                  |                  |                           | Pollu                | tant Emissi          | one (lbe/wo         | II nad\ |        |                 |        |         |        |
|                                |           |                        |            |                    | D I Total    |              |                      |                  |                  |                           | Foliu                | italit Lillissi      | T (IDS/WE           | ii pau) |        |                 |        |         |        |
|                                | 01        | Days on                |            | Round              | Round Trip   |              |                      |                  |                  |                           |                      |                      |                     |         |        |                 |        |         |        |
| Fortraced                      | Class of  | 1 1                    | # of       | Trips Per          | Distance     | VMT          | 00                   | NO               | D1440            | DM0.5                     | SO2 <sup>11</sup>    | V/00                 | 000                 | 0114    | NICO   | Farmed data and | D      | T.1     | V. I.  |
| Equipment                      | Vehicle   | Location <sup>10</sup> | Vehicles   | Day                | (mi)         | (mi)         | CO                   | NOx              | PM10             | PM2.5                     |                      | VOC                  | CO2                 | CH4     |        | Formaldehyde    |        | Toluene | Xylene |
| Fuel tanker                    | HDDV      | 5                      | 1          | 1                  | 6            | 30           | 1.13                 | 0.43             | na               | na                        | 0.001                | 0.32                 | 112                 | 0.0046  | 0.0029 | 0.0007          | 0.0006 | 0.0002  | 0.0002 |
| Logging truck                  | HDDV      | 2                      | 1          | 1                  | 6            | 12           | 0.45                 | 0.17             | na               | na                        | 0.000                | 0.13                 | 45                  | 0.0019  | 0.0011 | 0.0003          | 0.0002 | 0.0001  | 0.000  |
| Cementer truck                 | HDDV      | 2                      | 1          | 1                  | 6            | 12           | 0.45                 | 0.17             | na               | na                        | 0.000                | 0.13                 | 45                  | 0.0019  | 0.0011 | 0.0003          | 0.0002 | 0.0001  | 0.000  |
| Cement supply truck            | HDDV      | 2                      | 2          | 1                  | 6            | 24           | 0.90                 | 0.34             | na               | na                        | 0.001                | 0.26                 | 90                  | 0.0037  | 0.0023 | 0.0006          | 0.0004 | 0.0002  | 0.000  |
| Casing crew                    | HDDV      | 2                      | 1          | 1                  | 6            | 12           | 0.45                 | 0.17             | na               | na                        | 0.000                | 0.13                 | 45                  | 0.0019  | 0.0011 | 0.0003          | 0.0002 | 0.0001  | 0.000  |
|                                |           |                        |            |                    |              |              |                      |                  |                  |                           |                      |                      |                     |         |        |                 |        |         |        |

na

na

na

0.000

0.009

na

na

0.04

0.05

na

0.13

4.72

0.10

2.90

0.83

0.64

10

45

1.664

30

901

485

224.87

3,687

0.0019

0.0688

0.0023

0.0692

0.1746

0.01

0.34

0.0011

0.0423

0.0067

0.1978

0.0794

0.01

0.34

0.0003

0.0105

0.0038

0.1118

0.0125

0.00

0.14

0.0002

0.0083

0.0020

0.0579

0.0222

0.00

0.09

0.0001

0.0036

0.0005

0.0145

0.0054

0.00

0.03

0.0001

0.0025

0.0003

0.0102

0.0038

0.00

0.02

#### Notes:

Laydown machine

access) - Gas

TOTAL (POUNDS)

Rig hauler

Water truck (100 BBL)

Light duty vehicles (trips for bits)

Light duty vehicles (employee access) - Diesel

Light duty vehicles (employee

Table 5.6

AP-42, Volume II - Mobile Sources, Appendix H, "Heavy Duty Diesel Trucks" high altitude, "aged" with 50,000 miles service, 2001+ model year (EPA 1995).

2

6

<sup>2</sup> AP-42, Volume II - Mobile Sources, Appendix H, "Light Duty Diesel Trucks" high altitude, "aged" with 50,000 miles service, 1990+ model year for NOx, 1984+ model year for CO and HC (EPA 1995).

12

60

1,776

666

60

0.45

16.70

0.33

9.91

14.18

2.26

- 3 AP-42, Volume II Mobile Sources, Appendix H, "Light Duty Gasoline Trucks I" high altitude, "aged" with 50,000 miles service, 1998+ model year (EPA 1995).
- <sup>4</sup> PM2.5 emissions assumed equal to PM10 emissions

HDDV

HDDV

LDDV

LDDV

LDGV

HDDV

37

37

37

<sup>5</sup> Compendium of Greenhouse Gas Emission Methodologies for the Oil and Gas Industry, Table 4-11 (HDDV diesel non-semi truck, LDGT average gasoline car, LDDV large diesel car), CO2 Mobile Source Emission Factors, American Petroleum Institute (2004).

0.17

6.35

0.16

4.62

0.96

0.86

- 6 Compendium of Greenhouse Gas Emission Methodologies for the Oil and Gas Industry for CH4, Table 4-9 (HDDV moderate control, LDGT oxidation catalyst, LDDT moderate control), Mobile Source Combustion Emission Factors, Table 4-10 (HDDV Diesel heavy truck, LDGT Gasoline light truck, LDDT Diesel light truck), Default Fuel Economy Factors for Different Types of Mobile Sources, American Petroleum Institute (2004).
- Compendium of Greenhouse Gas Emission Methodologies for the Oil and Gas Industry for N2O, Table 4-9 (HDDV moderate control, LDGT oxidation catalyst, LDDT moderate control), Mobile Source Combustion Emission Factors, Table 4-10 (HDDV Diesel heavy truck, LDGT Gasoline light truck, LDDT Diesel light truck), Default Fuel Economy Factors for Different Types of Mobile Sources, American Petroleum Institute (2004).
- <sup>8</sup> AP-42, Section 3.3, "Gasoline and Diesel Industrial Engines. Table 3.3-2, "Speciated Organic Compound Emission Factors for Uncontrolled Diesel Engines"
- <sup>9</sup> For light duty vehicles (pickup trucks), 60 percent would be diesel-powered, and 40 percent would be gas.
- 10 Well Construction total of 37 days assumed on location: 2 days for rig move, 2 days to rig up, 30 days drilling, 3 days rig down

3

11 Included in the Pollutant Emissions is the Ultra Low Sulfur adjustment based on 15 ppm Ultra Low Sulfur diesel fuel sulfur content compared to 500 ppm (0.05 percent) #2 diesel fuel sulfur content (15 / 500 = 0.03)

| Table 5.7                                                                               |                                                  |                          |                 |                      |                     |                     |                  |                   |
|-----------------------------------------------------------------------------------------|--------------------------------------------------|--------------------------|-----------------|----------------------|---------------------|---------------------|------------------|-------------------|
| Emission Source:                                                                        | WELL CONSTUCT                                    | ION - DRILLING E         | NGINES EMISS    | IONS - Tier 2        |                     |                     |                  |                   |
| Emission Equation:                                                                      | Emissions (lb/well)                              | = EF (g/hp-hr) x To      | tal Haraanawar  | (ba) v I E v Drillin | a Duration (days    | /wall) v Drilling D | uration (bra/da  | ) / 452 50 g/lb   |
| Emission Equation.                                                                      | Emissions (ib/weii)                              | = EF (g/IIp-III) X 10    | nai Hoisepowei  | (IIP) X LF X DIIIIII | ig Duration (days)  | well) x Dillillig D | uration (1115/ua | .y) / 455.59 g/lb |
|                                                                                         |                                                  |                          |                 |                      |                     |                     |                  |                   |
|                                                                                         | Pollutant                                        | Total Horsepower         |                 | Drilling Activity    | Drilling Activity   |                     |                  |                   |
|                                                                                         | Emission Factor <sup>1</sup>                     | All Engines <sup>2</sup> | Overall Load    | Duration             | Duration            | Emissions           | Emissions        |                   |
| Pollutant                                                                               | (g/hp-hr)                                        | (hp)                     | Factor          | (days/well)          | (hrs/day)           | (lb/well)           | (lb/hr/well)     |                   |
| CO                                                                                      | 2.60                                             | 4,450                    | 0.40            | 30                   | 24                  | 7,346.19            | 10.20            |                   |
| NO <sub>x</sub> <sup>3</sup>                                                            | 3.80                                             | 4,450                    | 0.40            | 30                   | 24                  | 10,736.74           | 14.91            |                   |
| SO <sub>2</sub> <sup>4</sup>                                                            | 0.0279                                           | 4,450                    | 0.40            | 30                   | 24                  | 78.82               | 0.11             |                   |
| VOC                                                                                     | 1.00                                             | 4,450                    | 0.40            | 30                   | 24                  | 2,825.46            | 3.92             |                   |
| PM <sub>10</sub>                                                                        | 0.15                                             | 4,450                    | 0.40            | 30                   | 24                  | 423.82              | 0.59             |                   |
| PM <sub>2.5</sub> <sup>5</sup>                                                          | 0.15                                             | 4,450                    | 0.40            | 30                   | 24                  | 423.82              | 0.59             |                   |
| CO <sub>2</sub> <sup>6</sup>                                                            | 521.63                                           | 4,450                    | 0.40            | 30                   | 24                  | 1,473,840.00        | 2,047.00         |                   |
| CH <sub>4</sub> <sup>7</sup>                                                            | 2.52E-02                                         | 4,450                    | 0.40            | 30                   | 24                  | 71.09               | 0.10             |                   |
| N <sub>2</sub> O <sup>8</sup>                                                           | 1.55E-02                                         | 4,450                    | 0.40            | 30                   | 24                  | 43.75               | 0.06             |                   |
| Formaldehyde <sup>9</sup>                                                               | 3.75E-03                                         | 4,450                    | 0.40            | 30                   | 24                  | 10.59               | 0.01             |                   |
| Benzene <sup>9</sup>                                                                    | 2.96E-03                                         | 4,450                    | 0.40            | 30                   | 24                  | 8.37                | 0.01             |                   |
| Toluene <sup>9</sup>                                                                    | 1.30E-03                                         | 4,450                    | 0.40            | 30                   | 24                  | 3.67                | 0.01             |                   |
| Xylene <sup>9</sup>                                                                     | 9.05E-04                                         | 4,450                    | 0.40            | 30                   | 24                  | 2.56                | 0.00             | Ì                 |
| •                                                                                       |                                                  | ,                        |                 |                      |                     |                     |                  |                   |
| Notes:                                                                                  |                                                  |                          |                 |                      |                     |                     |                  |                   |
| <sup>1</sup> Emission factors for T<br>Oct. 23, 1998) for engi<br>3 Nonroad Diesel Engi | •                                                | np and from Diesel N     | Net, Emissions  | Standards: USA:      | Nonroad Diesel B    | ngines, Table 1,    | ,                |                   |
| 2<br>Drilling engine total ho                                                           | orsepower is based on                            | two 1,500, two 600       | , and one 250 h | p engine, fueled v   | with ultra low sulf | ur diesel fuel (15  | ppm).            |                   |
| <sup>3</sup> For Tier 2 engines, the assume 3.8 g/bhp-hr fo                             |                                                  | •                        | d NOx emission  | rate is 4.8 g/bhp    | -hr. Emission ca    | lculations preser   | nted here        |                   |
| <sup>4</sup> AP-42 (EPA 1996), S<br>Industrial Engines". E<br>ppm).                     |                                                  |                          | •               |                      |                     |                     |                  |                   |
| PM <sub>2.5</sub> assumed equiv                                                         | alent to PM <sub>10</sub> for drilling           | g engines.               |                 |                      |                     |                     |                  |                   |
| <sup>6</sup> AP-42 (EPA 1996), S<br>Industrial Engines"; lb/                            |                                                  |                          |                 | 3.3-1, "Emission     | n Factors for Unc   | ontrolled Gasolin   | e and Diesel     |                   |
| <sup>7</sup> Based on methane er<br>GHG Emission Method                                 | missions of 0.13 g/L of dologies for the Oil and | ,                        | , ,             | L and heating val    | ue of 19,300 Btu/   | lb) from the "Cor   | npendium of      |                   |
| Based on nitrous oxid                                                                   | le emissions of 0.08 g<br>Emission Methodolog    | ,                        | ,               |                      | g value of 19,300   | Btu/lb) from the    |                  |                   |
| Compendium of Cric                                                                      |                                                  |                          |                 |                      |                     |                     |                  |                   |

| Table 5.8                                    |                              |                          |                   |                     |                     |                     |                     |             |  |
|----------------------------------------------|------------------------------|--------------------------|-------------------|---------------------|---------------------|---------------------|---------------------|-------------|--|
| Emission Source:                             | WELL CONSTUCT                | ION - DRILLING E         | NGINES EMISS      | IONS - Tier 4a (    | 2011)               |                     |                     |             |  |
| F                                            | F:: (II- ( II)               | FF (/b b) T-             |                   | (h) I F D-: II:-    | - Done George       | /II) D-:III D       |                     | 450.50 m/lb |  |
| Emission Equation:                           | Emissions (ID/Well)          | = EF (g/np-nr) x 10      | tai Horsepower    | (np) x LF x Drillir | ig Duration (days)  | weii) x Driiling D  | uration (nrs/day) / | 453.59 g/lb |  |
|                                              |                              |                          |                   |                     |                     |                     |                     |             |  |
|                                              | Pollutant                    | Total Horsepower         |                   | Drilling Activity   | Drilling Activity   |                     |                     |             |  |
|                                              | Emission Factor <sup>1</sup> | All Engines <sup>2</sup> | Overall Load      | Duration            | Duration            | Emissions           | Emissions           |             |  |
| Pollutant                                    | (g/hp-hr)                    | (hp)                     | Factor            | (days/well)         | (hrs/day)           | (lb/well)           | (lb/hr/well)        |             |  |
| CO                                           | 2.60                         | 4,450                    | 0.40              | 30                  | 24                  | 7,346.19            | 10.20               |             |  |
| NO <sub>x</sub>                              | 2.60                         | 4,450                    | 0.40              | 30                  | 24                  | 7,346.19            | 10.20               |             |  |
| SO <sub>2</sub> <sup>3</sup>                 | 0.0279                       | 4,450                    | 0.40              | 30                  | 24                  | 78.82               | 0.11                |             |  |
| VOC                                          | 0.30                         | 4,450                    | 0.40              | 30                  | 24                  | 847.64              | 1.18                |             |  |
| PM <sub>10</sub>                             | 0.075                        | 4,450                    | 0.40              | 30                  | 24                  | 211.91              | 0.29                |             |  |
| PM <sub>2.5</sub> <sup>4</sup>               | 0.075                        | 4,450                    | 0.40              | 30                  | 24                  | 211.91              | 0.29                |             |  |
| CO <sub>2</sub> <sup>5</sup>                 | 521.63                       | 4,450                    | 0.40              | 30                  | 24                  | 1,473,840.00        | 2,047.00            |             |  |
| CH₄ <sup>6</sup>                             | 2.52E-02                     | 4,450                    | 0.40              | 30                  | 24                  | 71.09               | 0.10                |             |  |
| $N_2O^7$                                     | 1.55E-02                     | 4,450                    | 0.40              | 30                  | 24                  | 43.75               | 0.06                |             |  |
| Formaldehyde <sup>8</sup>                    | 3.75E-03                     | 4,450                    | 0.40              | 30                  | 24                  | 10.59               | 0.01                |             |  |
| Benzene <sup>8</sup>                         | 2.96E-03                     | 4,450                    | 0.40              | 30                  | 24                  | 8.37                | 0.01                |             |  |
| Toluene <sup>8</sup>                         | 1.30E-03                     | 4,450                    | 0.40              | 30                  | 24                  | 3.67                | 0.01                |             |  |
| Xylene <sup>8</sup>                          | 9.05E-04                     | 4,450                    | 0.40              | 30                  | 24                  | 2.56                | 0.00                |             |  |
| •                                            |                              |                          |                   |                     |                     |                     |                     |             |  |
| Notes:                                       |                              |                          |                   |                     |                     |                     |                     |             |  |
| <sup>1</sup> Emission factors for            | Tier 4 engines taker         | from "Control of En      | missions of Air I | Pollution From No   | nroad Diesel Eng    | gines and Fuel" (   | 69 FR 38980,        |             |  |
| June 29, 2004) for en                        | •                            | •                        |                   |                     |                     |                     | oad Diesel          |             |  |
| Engines, Table 4, "Ef                        |                              | •                        | Above 560 kW      | , g/kWh (g/bhp-h    | r)." Available on-  | line at             |                     |             |  |
| http://www.dieselnet.                        |                              |                          |                   |                     |                     |                     | · \                 |             |  |
| <sup>2</sup> Drilling engine total h         | •                            |                          |                   |                     |                     |                     | ` /                 |             |  |
| <sup>3</sup> AP-42 (EPA 1996), \$            |                              |                          | •                 |                     |                     |                     |                     |             |  |
| Diesel Industrial Engi                       | nes". Emission rate          | of 0.00205 lb/hp-hi      | converts to 0.0   | 279 g/hp-hr when    | converting units    | and adjusting for   | ultra-low           |             |  |
| sulfur fuel (15 ppm).                        |                              |                          |                   |                     |                     |                     |                     |             |  |
| <sup>4</sup> PM <sub>2.5</sub> assumed equi  |                              |                          | odal Facility T   | -1-1-004 "" :       | <b>F</b>            | h                   | - Para and          |             |  |
| <sup>5</sup> AP-42 (EPA 1996), \$            |                              |                          | •                 |                     | sion Factors for C  | Incontrolled Gas    | oline and           |             |  |
| Diesel Industrial Engi<br>Based on methane e |                              |                          | ,                 |                     | value of 10 200 E   | Stu/lb) from the "1 | Compondium          |             |  |
| of GHG Emission Me                           | •                            | •                        | •                 |                     | value 01 19,300 E   | otu/ω) ποιπ της τ   | Compendium          |             |  |
| Based on nitrous oxi                         |                              | •                        |                   | •                   | nting value of 19.3 | 800 Btu/lh) from t  | he                  |             |  |
| "Compendium of GH0                           |                              |                          |                   |                     |                     | oo baanbi nom t     |                     |             |  |
| <sup>8</sup> AP-42 (EPA 1996), 3             |                              |                          | •                 | •                   |                     | mpound Emissio      | n Factors for       |             |  |
|                                              | Engines", converted f        |                          |                   |                     |                     |                     |                     |             |  |
| Onloon thomas Diocoti L                      |                              |                          |                   | arorago pranto op   | bonno naon bonnoam  | iption (Boi o) or   | 1,000 Blainp        |             |  |

Emission Source: WELL CONSTRUCTION - DRILLING ENGINES EMISSIONS - Tier 4b (2015)

Table 5.9

| Emission Equation:                                                                                          | Emissions (lb/well)                        | = EF (g/hp-hr) x To                         | tal Horsepower    | (hp) x LF x Drillin | ng Duration (days  | /well) x Drilling D | Duration (hrs/da | ay) / 453.59 g |
|-------------------------------------------------------------------------------------------------------------|--------------------------------------------|---------------------------------------------|-------------------|---------------------|--------------------|---------------------|------------------|----------------|
|                                                                                                             |                                            |                                             |                   |                     |                    |                     |                  |                |
|                                                                                                             | Pollutant                                  | Total Horsepower                            |                   | Drilling Activity   | Drilling Activity  |                     |                  |                |
|                                                                                                             | Emission Factor <sup>1</sup>               | All Engines <sup>2</sup>                    | Overall Load      | Duration            | Duration           | Emissions           | Emissions        |                |
| Pollutant                                                                                                   | (g/hp-hr)                                  | (hp)                                        | Factor            | (days/well)         | (hrs/day)          | (lb/well)           | (lb/hr/well)     |                |
| CO                                                                                                          | 2.60                                       | 4,450                                       | 0.40              | 30                  | 24                 | 7,346.19            | 10.20            |                |
| NO <sub>x</sub>                                                                                             | 2.60                                       | 4,450                                       | 0.40              | 30                  | 24                 | 7,346.19            | 10.20            |                |
| SO <sub>2</sub> <sup>3</sup>                                                                                | 0.0279                                     | 4,450                                       | 0.40              | 30                  | 24                 | 78.82               | 0.11             |                |
| VOC                                                                                                         | 0.14                                       | 4,450                                       | 0.40              | 30                  | 24                 | 395.56              | 0.55             |                |
| PM <sub>10</sub>                                                                                            | 0.022                                      | 4,450                                       | 0.40              | 30                  | 24                 | 62.16               | 0.09             |                |
| PM <sub>2.5</sub> <sup>4</sup>                                                                              | 0.022                                      | 4,450                                       | 0.40              | 30                  | 24                 | 62.16               | 0.09             |                |
| CO <sub>2</sub> <sup>5</sup>                                                                                | 521.63                                     | 4,450                                       | 0.40              | 30                  | 24                 | 1,473,840.00        | 2,047.00         |                |
| CH₄ <sup>6</sup>                                                                                            | 2.52E-02                                   | 4,450                                       | 0.40              | 30                  | 24                 | 71.09               | 0.10             |                |
| N₂O <sup>7</sup>                                                                                            | 1.55E-02                                   | 4,450                                       | 0.40              | 30                  | 24                 | 43.75               | 0.06             |                |
| Formaldehyde <sup>8</sup>                                                                                   | 3.75E-03                                   | 4,450                                       | 0.40              | 30                  | 24                 | 10.59               | 0.01             |                |
| Benzene <sup>8</sup>                                                                                        | 2.96E-03                                   | 4,450                                       | 0.40              | 30                  | 24                 | 8.37                | 0.01             |                |
| Toluene <sup>8</sup>                                                                                        | 1.30E-03                                   | 4,450                                       | 0.40              | 30                  | 24                 | 3.67                | 0.01             |                |
| Xylene <sup>8</sup>                                                                                         | 9.05E-04                                   | 4,450                                       | 0.40              | 30                  | 24                 | 2.56                | 0.00             |                |
|                                                                                                             |                                            |                                             |                   |                     |                    |                     |                  |                |
| Notes:                                                                                                      |                                            |                                             |                   |                     |                    |                     |                  |                |
| <sup>1</sup> Emission factors for<br>(69 FR 38980, June 2<br>Nonroad Diesel Engin<br>http://www.dieselnet.c | 9, 2004) for engines<br>les, Table 4, "EPA | used in generator s<br>Fier 4 Emission Star | sets greater than | n 1,200 hp and fro  | om Diesel Net, Ei  | missions Standa     | rds: USA:        |                |
| <sup>2</sup> Drilling engine total h                                                                        | orsepower is based                         | l on two 1,500, two                         | 600, and one 25   | 60 hp engine, fuel  | ed with ultra low  | sulfur diesel fuel  | (15 ppm).        |                |
| <sup>3</sup> AP-42 (EPA 1996), S<br>Diesel Industrial Engii<br>sulfur fuel (15 ppm).                        |                                            |                                             | 0                 | ,                   |                    |                     |                  |                |
| <sup>4</sup> PM <sub>2.5</sub> assumed equi <sup>,</sup>                                                    | valent to PM <sub>10</sub> for di          | rilling engines.                            |                   |                     |                    |                     |                  |                |
| <sup>5</sup> AP-42 (EPA 1996), S                                                                            |                                            |                                             |                   |                     | sion Factors for l | Jncontrolled Gas    | oline and        |                |
| Diesel Industrial Engir                                                                                     |                                            |                                             | •                 | • •                 |                    |                     |                  |                |
| <sup>6</sup> Based on methane e                                                                             | emissions of 0.13 g/l                      | L of diesel fuel (dies                      | el density of 850 | 0 g/L and heating   | value of 19.300 E  | Btu/lb) from the "  | Compendium       |                |

Based on nitrous oxide emissions of 0.08 g/L of diesel fuel (diesel density of 850 g/L and heating value of 19,300 Btu/lb) from the

<sup>8</sup>AP-42 (EPA 1996), Section 3.3, "Gasoline and Diesel Industrial Engines. Table 3.3-2, "Speciated Organic Compound Emission Factors for Uncontrolled Diesel Engines", converted from lb/MMBtu to lb/hp-hr using an average brake-specific fuel consumption (BSFC) of 7,000 Btu/hp-

of GHG Emission Methodologies for the Oil and Gas Industry," Table 4-9 (2004).

"Compendium of GHG Emission Methodologies for the Oil and Gas Industry," Table 4-9 (2004).

| Table 5.10                                      |                                        |                        |                               |                                                 |                 |    |
|-------------------------------------------------|----------------------------------------|------------------------|-------------------------------|-------------------------------------------------|-----------------|----|
| Emission Source:                                | WELL COMPL                             | ETION AND T            | ESTING - FLA                  | ARING EMISSIC                                   | NS              |    |
| Emission Factor From:                           | AP-42, Section                         | 1.4 (EPA 1998          | 8)                            |                                                 |                 |    |
|                                                 | "Natural Gas Co                        |                        | - ,                           |                                                 |                 |    |
|                                                 |                                        |                        |                               |                                                 |                 |    |
| Emission Equations:                             | Emissions (TP                          | Y) = Average g         | as emitted (M                 | Mscf) x EF (lb/M                                | Mscf) / 2000 II | os |
| Data:                                           | Average gas<br>emitted<br>(per well) = | 0.4                    | MMscf                         |                                                 |                 |    |
|                                                 | 100% flared, 0%                        |                        | IVIIVISCI                     |                                                 |                 |    |
|                                                 |                                        |                        |                               |                                                 |                 |    |
| Pollutant                                       | lb/MMscf <sup>2</sup>                  | Emissions<br>(lb/well) | Duration <sup>2</sup> (hours) | Hourly<br>Emissions<br>per Well<br>(lb/hr/well) |                 |    |
| CO                                              | 84                                     | 33.6                   | 48                            | 0.70                                            |                 |    |
| NOx                                             | 100                                    | 40                     | 48                            | 0.70                                            |                 |    |
| PM10                                            | 7.6                                    | 3.04                   | 48                            | 0.06                                            |                 |    |
| PM2.5 <sup>1</sup>                              | 7.6                                    | 3.04                   | 48                            | 0.06                                            |                 |    |
| SO2                                             | 0.6                                    | 0.24                   | 48                            | 0.00                                            |                 |    |
| VOC                                             | 5.5                                    | 2.2                    | 48                            | 0.05                                            |                 |    |
| CO <sub>2</sub>                                 | 120,000                                | 48000                  | 48                            | 1000.00                                         |                 |    |
| CH <sub>4</sub>                                 | 2.3                                    | 0.92                   | 48                            | 0.02                                            |                 |    |
| N <sub>2</sub> O                                | 2.2                                    | 0.88                   | 48                            | 0.02                                            |                 |    |
| Benzene                                         | 2.10E-03                               | 8.40E-04               | 48                            | 1.75E-05                                        |                 |    |
| Toluene                                         | 3.40E-03                               | 1.36E-03               | 48                            | 2.83E-05                                        |                 |    |
| Hexane                                          | 1.81E+00                               | 7.23E-01               | 48                            | 1.51E-02                                        |                 |    |
|                                                 |                                        |                        |                               |                                                 |                 |    |
| Notes:                                          |                                        |                        |                               |                                                 |                 |    |
| <sup>1</sup> PM <sub>2.5</sub> emissions assume | ed equal to PM10                       | emissions              |                               |                                                 |                 |    |
| <sup>2</sup> Assumes there are two              | davs of flaring be                     | fore going to sa       | ales                          |                                                 |                 |    |
| and the                                         |                                        | 909 .0 00              |                               |                                                 |                 |    |

|                   |          | Nat           | ural Gas Analys | is          |         |                     |
|-------------------|----------|---------------|-----------------|-------------|---------|---------------------|
|                   |          | Volumetric    | Molecular       | Gas         | Weight  |                     |
| Gas Component     |          | Concentration | Weight          | Weight      | Percent | Weight <sup>2</sup> |
|                   |          | mol%          | (lb/lb-mol)     | (lb/lb/mol) | wt %    | (lb/MMscf           |
| Carbon Dioxid     | e CO 2:  | 1.49          | 43.99           | 0.65        | 1.63    | 691.35              |
| Nitrogen          | N 2:     | 0.58          | 28.02           | 0.16        | 0.40    | 171.02              |
| Hydrogen Sulfi    | de H 2s: | 0.00          | 34.06           | 0.00        | 0.00    | 0.00                |
| Methane           | C1:      | 67.48         | 16.04           | 10.82       | 26.93   | 11,435.41           |
| Ethane            | C2:      | 13.68         | 30.07           | 4.11        | 10.23   | 4,344.78            |
| Non-Reactive, nor | n-HAP    | 83.23         | 152.18          | 15.75       | 39.20   | 16,642.57           |
| Propane           | C3:      | 10.88         | 44.10           | 4.80        | 11.94   | 5,071.19            |
| Iso-Butane        | IC4:     | 1.07          | 58.12           | 0.62        | 1.55    | 659.50              |
| Nor-Butane        | NC4:     | 2.94          | 58.12           | 1.71        | 4.26    | 1,807.91            |
| Iso-Pentane       | IC5:     | 0.54          | 72.15           | 0.39        | 0.97    | 412.79              |
| Nor-Pentane       | NC5:     | 0.62          | 72.15           | 0.45        | 1.12    | 473.57              |
| Hexane Plus       | C6+:     | 0.71          | 100.21          | 0.71        | 1.77    | 749.89              |
| Reactiv           | ve VOC   | 16.77         | 404.85          | 8.68        | 21.61   | 9,174.86            |
|                   | Totals   | 100.00        |                 | 40.19       | 100.00  | 42.460.00           |

<sup>&</sup>lt;sup>1</sup> Gas analysis from Jackson County, CO 11/21/07

<sup>&</sup>lt;sup>2</sup> Gas density is 0.04246 lb/scf (19.26 g/scf) - Need to determine gas density for sample being used

| <b>Table 5.11</b>     |                     |                 |       |           |           |           |           |          |    |  |
|-----------------------|---------------------|-----------------|-------|-----------|-----------|-----------|-----------|----------|----|--|
| <b>Emission</b>       | Source:             | WASTE POND      | EV.   | APORAT    | ION       |           |           |          |    |  |
|                       |                     |                 |       |           |           |           |           |          |    |  |
| <b>Emission</b>       | Factor From:        | CDPHE-APCD      | - ba  | sed on te | ests cond | ducted by | Williams  | E&P      |    |  |
|                       |                     |                 |       |           |           |           |           |          |    |  |
| Emission              | Factor Equation     | Emissions (TP   | Y) =  | lbs VOC/  | bbl x bbl | water to  | waste pit | / 2000 I | bs |  |
|                       |                     |                 |       |           |           |           |           |          |    |  |
|                       |                     |                 |       |           |           |           |           |          |    |  |
|                       | Emission            |                 |       |           |           |           |           |          |    |  |
|                       | Factor <sup>1</sup> |                 |       |           |           |           |           |          |    |  |
| Barrels               | (lbs VOC/bbl)       | Emissions (lb/v | vell) |           |           |           |           |          |    |  |
| 10,000                | 0.07                | 700             |       |           |           |           |           |          |    |  |
|                       |                     |                 |       |           |           |           |           |          |    |  |
| <sup>1</sup> Based or | n test conducted    | by Williams F&  | P fo  | r CDPHF   | -APCD     |           |           |          |    |  |
|                       | nd a better emis    | •               | . 10  | . 921112  | 7 02      |           |           |          |    |  |
| (1122010              |                     |                 |       |           |           |           |           |          |    |  |

| Table 5.12                                                    |                    |                                     |                   |                   |          |                      |               |            |                    |                  |                        |                     |                   |                     |
|---------------------------------------------------------------|--------------------|-------------------------------------|-------------------|-------------------|----------|----------------------|---------------|------------|--------------------|------------------|------------------------|---------------------|-------------------|---------------------|
| Emission Source:                                              | WELL COMP          | LETION AND                          | TESTING - \       | EHICLE ROA        | D DUST E | MISSIONS             |               |            |                    |                  |                        |                     |                   |                     |
|                                                               |                    |                                     |                   |                   |          |                      |               |            |                    |                  |                        |                     |                   |                     |
| Emission Factor From:                                         | AP-42, Section     |                                     |                   |                   |          |                      |               |            |                    |                  |                        |                     |                   |                     |
|                                                               | "Unpaved Roa       | ıds" – Industri                     | ial roads         |                   |          |                      |               |            |                    |                  |                        |                     |                   |                     |
| Emission Factor Equation:                                     | E = k x (s/12)     | ) <sup>a</sup> x (W/3) <sup>b</sup> |                   |                   |          |                      |               |            |                    |                  |                        |                     |                   |                     |
| Where:                                                        | E =                | Size-specific                       | emission fact     | or (lb/VMT)       |          |                      |               |            |                    |                  |                        |                     |                   |                     |
|                                                               | S =                | Surface mate                        | erial silt conter | nt (%)            |          |                      |               |            |                    |                  |                        |                     |                   |                     |
|                                                               | W =                | Mean vehicle                        | weight (tons)     |                   |          |                      |               |            |                    |                  |                        |                     |                   |                     |
|                                                               | k =                | Empirical co                        | nstant, particle  | e size multiplie  | er       |                      |               |            |                    |                  |                        |                     |                   |                     |
|                                                               | a =                | Empirical co                        | nstant            |                   |          |                      |               |            |                    |                  |                        |                     |                   |                     |
|                                                               | b =                | Empirical co                        | nstant            |                   |          |                      |               |            |                    |                  |                        |                     |                   |                     |
|                                                               |                    |                                     |                   |                   |          |                      |               |            |                    |                  |                        |                     |                   |                     |
| Data:                                                         | k =                |                                     | for PM10          |                   |          |                      |               |            |                    |                  |                        |                     |                   |                     |
|                                                               | k =                |                                     | for PM2.5         | D140 5            |          |                      |               |            |                    |                  |                        |                     |                   |                     |
|                                                               | a=                 |                                     | for PM10 and      |                   |          |                      |               |            |                    |                  |                        |                     |                   |                     |
|                                                               | b=                 | 0.45                                | for PM10 and      | PM2.5             |          |                      |               |            |                    |                  |                        |                     |                   |                     |
|                                                               |                    |                                     |                   | T-1-1             |          |                      | Vehicle Miles |            | DM440              | DM0.5            | I I a a a a facilità d | I I a a a desilla d | 0                 | 0 1 11 1            |
|                                                               | Nousbaras          |                                     |                   | Total             | Mean     | Silt                 |               |            | PM10               | PM2.5            |                        |                     | Controlled        | Controlled<br>PM2.5 |
|                                                               | Number of          |                                     |                   | Number of         | Vehicle  |                      | Travelled per |            | Emission           | Emission         | PM10                   | PM2.5               | PM10              |                     |
| Vehicle                                                       | Round Trips        | Days on                             | Number of         | Round Trips       | Weight   | Content <sup>1</sup> | Vehicle       | Control    | Factor<br>(lb/VMT) | Factor           | Emissions              | Emissions           | Emissions         | Emissions           |
|                                                               | per Day            | Location                            | Vehicles          | (per year?)<br>24 | (tons)   | (%)<br>24            | (VMT/vehicle) | Efficiency | 8.98               | (lb/VMT)<br>0.90 | (lbs/pad)              | (lbs/pad)<br>129    | (lbs/pad)<br>1034 | (lbs/pad)           |
| Casing hauler                                                 | 6                  | 1                                   |                   | 24                |          | 24                   | 6             | 80%        |                    |                  | 1293                   | 7                   |                   | 103<br>5            |
| Completion rig                                                | 1                  |                                     | 1                 | 1                 | 61.5     |                      | -             | 80%        | 10.90              | 1.09<br>0.74     | 65<br>178              | 18                  | 52<br>142         |                     |
| Logging truck Sand truck                                      | 3                  | 2<br>5                              | 1                 | 4<br>15           | 26<br>40 | 24<br>24             | 6             | 80%<br>80% | 7.40<br>8.98       | 0.74             | 808                    | 81                  | 647               | 14<br>65            |
|                                                               | 1                  | 2                                   | 13                | 26                | 40       | 24                   | 6             | 80%        | 8.98               | 0.90             | 1401                   | 140                 | 1121              | 112                 |
| Frac pumper<br>Fracmaster delivery                            | 1                  |                                     | 2                 | 4                 | 40       | 24                   | 6             | 80%        | 8.98               | 0.90             | 216                    | 22                  | 172               | 17                  |
| -                                                             | 3                  | 2<br>5                              | 1                 |                   | 40       |                      | 6             |            | 8.98               |                  | -                      | 81                  | 647               |                     |
| Water truck (road dust control) Light duty vehicles (employee | 3                  | 5                                   | 1                 | 15                | 40       | 24                   | 0             | 80%        | 0.98               | 0.90             | 808                    | 01                  | 647               | 65                  |
| access)                                                       | 2                  | 10                                  | 6                 | 120               | 4.6      | 24                   | 6             | 80%        | 3.39               | 0.34             | 2443                   | 244                 | 1954              | 195                 |
| Water truck - frac water                                      | 12                 | 8                                   | 2                 | 192               | 4.6      | 24                   | 6             | 80%        | 8.98               | 0.34             | 10344                  | 1034                | 8275              | 828                 |
| TOTAL                                                         | 12                 | U                                   |                   | 132               | 40       |                      | . 0           | OU /0      | 0.90               | 0.90             | 10344                  | 1034                | 14044             | 1404                |
| IOIAL                                                         |                    |                                     |                   |                   |          |                      |               |            |                    |                  |                        |                     | 17044             | 1404                |
| <sup>1</sup> Silt content from AP-42 Table <sup>2</sup>       | 12 2 2 1 for a fe  | achly graded                        | haul road         |                   |          |                      |               |            |                    |                  |                        |                     |                   |                     |
| Sill Content horn AP-42 Table                                 | 13.2.2-1 101 a 116 | estily graded                       | naui ioau.        |                   |          |                      |               |            |                    |                  |                        |                     |                   |                     |

| Table 5.13                                |                     |                        |                  |                        |                        |                |                  |                   |                  |                           |                      |                      |                     |              |             |                  |           |             |        |
|-------------------------------------------|---------------------|------------------------|------------------|------------------------|------------------------|----------------|------------------|-------------------|------------------|---------------------------|----------------------|----------------------|---------------------|--------------|-------------|------------------|-----------|-------------|--------|
| Emission Source:                          | WELL COM            | PLETION AN             | ND TESTING       | - VEHICLE E            | XHAUST EMI             | SSIONS         |                  |                   |                  |                           |                      |                      |                     |              |             |                  |           |             |        |
|                                           |                     |                        |                  |                        |                        |                |                  |                   |                  |                           |                      |                      |                     |              |             |                  |           |             |        |
| Emission Equation:                        | Emissions (1        | PY) = grams            | s/VMT x VN       | IT / 453.59 gra        | ms / 2000 lbs          |                |                  |                   |                  |                           |                      |                      |                     |              |             |                  |           |             |        |
|                                           |                     |                        |                  |                        |                        | /              | n.a.=123         |                   |                  |                           |                      |                      |                     |              |             |                  |           |             | -      |
|                                           |                     |                        |                  |                        |                        | ion Factors (g |                  | 26                | 7                | I                         | _ 0                  | 0                    | 0                   | 1            |             |                  |           |             |        |
| Equipment                                 | CO                  | NOx                    | PM10             | PM2.5 <sup>4</sup>     | SO2                    | VOC            | CO2 <sup>5</sup> | CH4 <sup>6</sup>  | N2O <sup>7</sup> | Formaldehyde <sup>8</sup> | Benzene <sup>8</sup> | Toluene <sup>8</sup> | Xylene <sup>8</sup> | ļ            |             |                  |           |             |        |
| HD Diesel Engine Trucks                   |                     |                        |                  |                        |                        |                |                  |                   |                  |                           |                      |                      |                     |              |             |                  |           |             |        |
| (HDDV)                                    | 17.06               | 6.49                   | n/a              | n/a                    | 0.32                   | 4.82           | 1700             | 0.07028112        | 0.0432           | 0.0107                    | 0.0085               | 0.00371              | 0.0026              |              |             |                  |           |             |        |
| LD Diesel Trucks (60                      |                     |                        |                  |                        |                        |                |                  |                   |                  |                           |                      |                      |                     |              |             |                  |           |             |        |
| percent)9 (LDDV)                          | 2.53                | 1.18                   | n/a              | n/a                    | n/a                    | 0.74           | 230              | 0.01768291        | 0.0505           | 0.0286                    | 0.0148               | 0.00371              | 0.0026              |              |             |                  |           |             |        |
| LD Gas Trucks (40                         |                     |                        |                  |                        |                        |                |                  |                   |                  |                           |                      |                      |                     |              |             |                  |           |             |        |
| percent) (LDGV)                           | 9.659               | 0.651                  | n/a              | n/a                    | n/a                    | 0.562          | 330              | 0.11893728        | 0.0541           | 0.0085                    | 0.0151               | 0.00371              | 0.0026              |              |             |                  |           |             |        |
|                                           |                     |                        |                  |                        |                        |                |                  |                   |                  |                           |                      |                      |                     |              |             |                  |           |             |        |
|                                           |                     |                        |                  |                        |                        |                |                  |                   |                  |                           |                      |                      |                     |              |             |                  |           |             |        |
|                                           | 01                  | Days on                | # of             | Number of              | Round Trip<br>Distance | VMT            |                  |                   |                  |                           | Polit                | tant Emission        | ns (lbs/well        | pad)         |             |                  |           |             |        |
| Equipment                                 | Class of<br>Vehicle | Location <sup>10</sup> | # or<br>Vehicles | Round Trips<br>Per Day | (mi)                   | (mi)           | со               | NOx               | PM10             | PM2.5                     | SO2 <sup>11</sup>    | VOC                  | CO2                 | CH4          | N2O         | Formaldehyde     | Benzene   | Toluene     | Xylene |
| Casing hauler                             | HDDV                | 4                      | 1                | 6                      | 6                      | 144            | 5                | 2                 | na               | na Fiviz.5                | 0.003                | 2                    | 540                 | 0.022        | 0.014       | 0.003            | 0.003     | 0.001       | 0.001  |
| Completion rig                            | HDDV                | 1                      | 1                | 1                      | 6                      | 6              | 0                | 0                 | na               | na                        | 0.000                | 0                    | 22                  | 0.022        | 0.001       | 0.000            | 0.000     | 0.000       | 0.000  |
| Logging truck                             | HDDV                | 2                      |                  | 2                      | 6                      | 24             | 1                | 0                 | na               | na                        | 0.001                | 0                    | 90                  | 0.004        | 0.002       | 0.001            | 0.000     | 0.000       | 0.000  |
| Sand truck                                | HDDV                | 5                      | 1                | 3                      | 6                      | 90             | 3                | 1                 | na               | na                        | 0.002                | 1                    | 337                 | 0.014        | 0.002       | 0.002            | 0.002     | 0.001       | 0.001  |
| Frac pumper                               | HDDV                | 2                      | 13               | 1                      | 6                      | 156            | 6                | 2                 | na               | na                        | 0.003                | 2                    | 585                 | 0.024        | 0.015       | 0.004            | 0.003     | 0.001       | 0.001  |
| Fracmaster delivery                       | HDDV                | 2                      | 2                | 1                      | 6                      | 24             | 1                | 0                 | na               | na                        | 0.001                | 0                    | 90                  | 0.004        | 0.002       | 0.001            | 0.000     | 0.000       | 0.000  |
| Water truck (road dust                    |                     |                        |                  |                        | -                      |                |                  |                   |                  |                           |                      |                      |                     |              |             |                  |           |             |        |
| control)                                  | HDDV                | 5                      | 1                | 3                      | 6                      | 90             | 3                | 1                 | na               | na                        | 0.002                | 1                    | 337                 | 0.014        | 0.009       | 0.002            | 0.002     | 0.001       | 0.001  |
| Light duty vehicles                       |                     |                        |                  |                        |                        |                |                  |                   |                  |                           |                      |                      |                     |              |             |                  |           |             |        |
| (employee access) -                       |                     |                        |                  |                        |                        |                |                  |                   |                  |                           |                      |                      |                     |              |             |                  |           |             |        |
| Diesel                                    | LDDV                | 10                     | 4                | 2                      | 6                      | 480            | 3                | 1                 | na               | na                        | na                   | 1                    | 243                 | 0.019        | 0.053       | 0.030            | 0.016     | 0.004       | 0.003  |
| Light duty vehicles                       |                     |                        |                  |                        |                        |                |                  |                   |                  |                           |                      |                      |                     |              |             |                  |           |             |        |
| (employee access) - Gas                   | LDGV                | 10                     | 2                | 2                      | 6                      | 240            | 5                | 0                 | na               | na                        | na                   | 0                    | 175                 | 0.063        | 0.029       | 0.004            | 0.008     | 0.002       | 0.001  |
| Water truck - frac water                  |                     |                        |                  |                        |                        |                |                  |                   |                  |                           |                      |                      |                     |              |             |                  |           |             |        |
| 130 BBL                                   | HDDV                | 8                      | 2                | 12                     | 6                      | 1,152          | 43               | 16                | na               | na                        | 0.024                | 12                   | 4,318               | 0.178        | 0.110       | 0.027            | 0.022     | 0.009       | 0.007  |
| TOTAL (POUNDS)                            |                     |                        |                  |                        |                        |                | 71               | 26                | 0                | 0                         | 0.04                 | 19                   | 6,737               | 0.34         | 0.24        | 0.07             | 0.06      | 0.02        | 0.01   |
| Notes:                                    |                     |                        |                  |                        |                        |                |                  |                   |                  |                           |                      |                      |                     |              |             |                  |           |             |        |
|                                           | Courses Ann         | ondiv II "II           | sau Dutu D       | ioool Tayoko" b        | iah altituda "a        | and" with FO   | 000 miles ser    | iaa 2001 i ma     | dal veer (FD     | A 100E)                   |                      |                      |                     |              |             |                  |           |             |        |
| AP-42, Volume II - Mobile                 |                     |                        |                  |                        |                        | •              |                  |                   | - ' '            |                           |                      | 1110 (504            | 1005)               |              |             |                  |           |             |        |
| AP-42, Volume II - Mobile                 |                     |                        |                  |                        |                        |                |                  |                   |                  |                           | year for CO a        | nd HC (EPA           | 1995).              |              |             |                  |           |             |        |
| AP-42, Volume II - Mobile                 |                     |                        |                  |                        |                        |                | 0,000 miles :    | serисе, 1998+ г   | model year (I    | =PA 1995).                |                      | 1                    |                     |              |             | 1                |           |             |        |
| PM2.5 emissions assume                    |                     |                        | •                |                        |                        |                |                  |                   |                  |                           |                      |                      |                     |              |             |                  |           |             |        |
| 5 Compendium of Greenhou                  |                     |                        |                  |                        |                        |                |                  |                   |                  |                           |                      |                      |                     |              |             |                  |           |             |        |
| <sup>6</sup> Compendium of Greenhout      |                     |                        |                  |                        |                        |                |                  |                   |                  |                           | moderate con         | trol), Mobile S      | Source Com          | bustion Em   | ission Fac  | tors, Table 4-10 | (HDDV Die | sel heavy t | ruck,  |
| LDGT Gasoline light truck,                |                     |                        |                  |                        |                        |                |                  |                   |                  |                           |                      |                      |                     |              |             |                  |           |             |        |
| Compendium of Greenhout                   |                     |                        |                  |                        |                        |                |                  |                   |                  |                           | moderate cor         | trol), Mobile S      | Source Com          | bustion En   | nission Fac | tors, Table 4-10 | (HDDV Die | sel heavy t | ruck,  |
| LDGT Gasoline light truck,                |                     | 0 ,.                   |                  |                        |                        |                |                  |                   |                  |                           |                      |                      |                     |              |             |                  |           |             |        |
| 8 AP-42, Section 3.3, "Gas                |                     |                        |                  |                        |                        |                | Emission Fac     | ctors for Uncont  | rolled Diesel    | Engines"                  |                      |                      | _                   |              |             |                  |           |             |        |
| <sup>9</sup> For light duty vehicles (pid |                     | •                      |                  |                        |                        |                |                  |                   |                  |                           |                      |                      |                     |              |             |                  |           |             |        |
| Well Completion and Tes                   |                     |                        |                  |                        |                        |                |                  |                   |                  |                           |                      |                      |                     |              |             |                  |           |             |        |
| <sup>11</sup> Included in the Pollutant   | Emissions is        | the Ultra Lov          | v Sulfur adju    | stment based           | on 15 ppm Ult          | ra Low Sulfur  | diesel fuel su   | ılfur content cor | npared to 50     | 0 ppm (0.05 perc          | ent) #2 diesel       | fuel sulfur cor      | ntent (15 / 5       | 600 = 0.03). |             |                  |           |             |        |

| Emission Factor From: AP-42, Section 3.3 (EPA 1996)     "Gasoline and Diesel Industrial Engines"  Emission Equation: Emissions (Ib/well) = grams/hp-hr x hrs of use x Load Factor x hp / 453.59 grams  Data: Engine Horsepower: Q200 hp     Operating Load Factor: 0.6     Duration (hours) <sup>2</sup> : 84 hours    Emission Factors g/hp-hr (Ibs/well pad)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Table 5.14                     |                                       |                  |                                          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|---------------------------------------|------------------|------------------------------------------|
| "Gasoline and Diesel Industrial Engines"  Emission Equation:  Emissions (lb/well) = grams/hp-hr x hrs of use x Load Factor x hp / 453.59 grams  Data: Engine Horsepower: 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Emission Source:               | COMPLETION - FRAC                     | PUMP ENGINE      | S                                        |
| "Gasoline and Diesel Industrial Engines"  Emission Equation:  Emissions (lb/well) = grams/hp-hr x hrs of use x Load Factor x hp / 453.59 grams  Data: Engine Horsepower: 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                |                                       |                  |                                          |
| Emission Equation:  Emissions (lb/well) = grams/hp-hr x hrs of use x Load Factor x hp / 453.59 grams  Data:  Engine Horsepower: Operating Load Factor: Operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Emission Factor From:          |                                       |                  |                                          |
| Engine Horsepower:   2200 hp   Operating Load Factor:   0.6   Ouration (hours) <sup>2</sup> :   84 hours                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                | "Gasoline and Diesel Inc              | dustrial Engines | "                                        |
| Engine Horsepower:   2200 hp   Operating Load Factor:   0.6   Ouration (hours) <sup>2</sup> :   84 hours                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                |                                       |                  |                                          |
| Operating Load Factor:   0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Emission Equation:             | Emissions (lb/well) = gra             | ams/hp-hr x hrs  | of use x Load Factor x hp / 453.59 grams |
| Operating Load Factor:   0.6     Duration (hours) <sup>2</sup> :   84   hours                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Doto                           | Engine Hereenewer:                    | 2200             | ho                                       |
| Duration (hours) <sup>2</sup> : 84 hours                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Data:                          |                                       |                  |                                          |
| Emission   Factors   Emissions   (lbs/well pad)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                |                                       |                  |                                          |
| Factors g/hp-hr (lbs/well pad)   CO   3.03E+00   740.68   NOx   14.06129   3437.28   PM <sub>10</sub>   9.98E-01   243.94   PM <sub>2.5</sub>   9.98E-01   227.30   PM <sub>2.5</sub>   227.30 |                                | Duration (nours) :                    | 84               | nours                                    |
| Factors g/hp-hr (lbs/well pad)   CO   3.03E+00   740.68   NOx   14.06129   3437.28   PM <sub>10</sub>   9.98E-01   243.94   PM <sub>2.5</sub>   9.98E-01   227.30   PM <sub>2.5</sub>   227.30 |                                | Fmission                              |                  |                                          |
| Pollutant   g/hp-hr   (lbs/well pad)   CO   3.03E+00   740.68   NOx   14.06129   3437.28   PM <sub>10</sub>   9.98E-01   243.94   PM <sub>2.5</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                |                                       | Fmissions        |                                          |
| CO 3.03E+00 740.68  NOx 14.06129 3437.28  PM <sub>10</sub> 9.98E-01 243.94  PM <sub>2.5</sub> <sup>1</sup> 9.98E-01 243.94  SO <sub>2</sub> 9.30E-01 227.30  VOC 1.14E+00 278.76  CO2 521.63 127512.00  CH <sub>4</sub> <sup>3</sup> 1.16E-01 28.31  Form. 3.75E-03 0.92  Benzene 2.96E-03 0.72  Toluene 1.30E-03 0.32  Xylene 9.05E-04 0.22  Notes:  1 PM <sub>2.5</sub> emissions assumed equal to PM <sub>10</sub> emissions.  2 Assumes 12 hours per day for 14 days. 3 Compendium of Greenhouse Gas Emission Methodologies for the Oil and Gas Industry Table 4-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Pollutant                      |                                       |                  |                                          |
| NOx 14.06129 3437.28 PM <sub>10</sub> 9.98E-01 243.94 PM <sub>2.5</sub> <sup>1</sup> 9.98E-01 243.94 SO <sub>2</sub> 9.30E-01 227.30 VOC 1.14E+00 278.76 CO2 521.63 127512.00 CH <sub>4</sub> <sup>3</sup> 1.16E-01 28.31 Form. 3.75E-03 0.92 Benzene 2.96E-03 0.72 Toluene 1.30E-03 0.32 Xylene 9.05E-04 0.22  Notes:  1 PM <sub>2.5</sub> emissions assumed equal to PM <sub>10</sub> emissions. 2 Assumes 12 hours per day for 14 days. 3 Compendium of Greenhouse Gas Emission Methodologies for the Oil and Gas Industry Table 4-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CO                             | <u> </u>                              |                  |                                          |
| PM <sub>2.5</sub> <sup>1</sup> 9.98E-01 243.94  SO <sub>2</sub> 9.30E-01 227.30  VOC 1.14E+00 278.76  CO2 521.63 127512.00  CH <sub>4</sub> <sup>3</sup> 1.16E-01 28.31  Form. 3.75E-03 0.92  Benzene 2.96E-03 0.72  Toluene 1.30E-03 0.32  Xylene 9.05E-04 0.22  Notes: <sup>1</sup> PM <sub>2.5</sub> emissions assumed equal to PM <sub>10</sub> emissions. <sup>2</sup> Assumes 12 hours per day for 14 days. <sup>3</sup> Compendium of Greenhouse Gas Emission Methodologies for the Oil and Gas Industry Table 4-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NOx                            | 14.06129                              | 3437.28          |                                          |
| SO2       9.30E-01       227.30         VOC       1.14E+00       278.76         CO2       521.63       127512.00         CH <sub>4</sub> <sup>3</sup> 1.16E-01       28.31         Form.       3.75E-03       0.92         Benzene       2.96E-03       0.72         Toluene       1.30E-03       0.32         Xylene       9.05E-04       0.22    Notes: <sup>1</sup> PM <sub>2.5</sub> emissions assumed equal to PM <sub>10</sub> emissions. <sup>2</sup> Assumes 12 hours per day for 14 days. <sup>3</sup> Compendium of Greenhouse Gas Emission Methodologies for the Oil and Gas Industry Table 4-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PM <sub>10</sub>               | 9.98E-01                              | 243.94           |                                          |
| VOC         1.14E+00         278.76           CO2         521.63         127512.00           CH <sub>4</sub> <sup>3</sup> 1.16E-01         28.31           Form.         3.75E-03         0.92           Benzene         2.96E-03         0.72           Toluene         1.30E-03         0.32           Xylene         9.05E-04         0.22    Notes:  1 PM <sub>2.5</sub> emissions assumed equal to PM <sub>10</sub> emissions. 2 Assumes 12 hours per day for 14 days. 3 Compendium of Greenhouse Gas Emission Methodologies for the Oil and Gas Industry Table 4-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PM <sub>2.5</sub> <sup>1</sup> | 9.98E-01                              | 243.94           |                                          |
| CO2         521.63         127512.00           CH <sub>4</sub> <sup>3</sup> 1.16E-01         28.31           Form.         3.75E-03         0.92           Benzene         2.96E-03         0.72           Toluene         1.30E-03         0.32           Xylene         9.05E-04         0.22           Notes:         1           PM <sub>2.5</sub> emissions assumed equal to PM <sub>10</sub> emissions.         2           Assumes 12 hours per day for 14 days.         3           Compendium of Greenhouse Gas Emission Methodologies for the Oil and Gas Industry Table 4-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SO <sub>2</sub>                | 9.30E-01                              | 227.30           |                                          |
| CH43       1.16E-01       28.31         Form.       3.75E-03       0.92         Benzene       2.96E-03       0.72         Toluene       1.30E-03       0.32         Xylene       9.05E-04       0.22         Notes:       1 PM2.5 emissions assumed equal to PM10 emissions.         2 Assumes 12 hours per day for 14 days.         3 Compendium of Greenhouse Gas Emission Methodologies for the Oil and Gas Industry Table 4-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | VOC                            | 1.14E+00                              | 278.76           |                                          |
| Form. 3.75E-03 0.92  Benzene 2.96E-03 0.72  Toluene 1.30E-03 0.32  Xylene 9.05E-04 0.22  Notes:  1 PM <sub>2.5</sub> emissions assumed equal to PM <sub>10</sub> emissions.  2 Assumes 12 hours per day for 14 days.  3 Compendium of Greenhouse Gas Emission Methodologies for the Oil and Gas Industry Table 4-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CO2                            | 521.63                                | 127512.00        |                                          |
| Benzene 2.96E-03 0.72 Toluene 1.30E-03 0.32 Xylene 9.05E-04 0.22  Notes:  1 PM <sub>2.5</sub> emissions assumed equal to PM <sub>10</sub> emissions.  2 Assumes 12 hours per day for 14 days.  3 Compendium of Greenhouse Gas Emission Methodologies for the Oil and Gas Industry Table 4-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CH <sub>4</sub> <sup>3</sup>   | 1.16E-01                              | 28.31            |                                          |
| Toluene 1.30E-03 0.32  Xylene 9.05E-04 0.22  Notes:  PM <sub>2.5</sub> emissions assumed equal to PM <sub>10</sub> emissions.  Assumes 12 hours per day for 14 days.  Compendium of Greenhouse Gas Emission Methodologies for the Oil and Gas Industry Table 4-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Form.                          | 3.75E-03                              | 0.92             |                                          |
| Notes:  PM <sub>2.5</sub> emissions assumed equal to PM <sub>10</sub> emissions.  Assumes 12 hours per day for 14 days.  Compendium of Greenhouse Gas Emission Methodologies for the Oil and Gas Industry Table 4-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Benzene                        | 2.96E-03                              | 0.72             |                                          |
| Notes: <sup>1</sup> PM <sub>2.5</sub> emissions assumed equal to PM <sub>10</sub> emissions. <sup>2</sup> Assumes 12 hours per day for 14 days. <sup>3</sup> Compendium of Greenhouse Gas Emission Methodologies for the Oil and Gas Industry Table 4-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Toluene                        |                                       |                  |                                          |
| <sup>1</sup> PM <sub>2.5</sub> emissions assumed equal to PM <sub>10</sub> emissions. <sup>2</sup> Assumes 12 hours per day for 14 days. <sup>3</sup> Compendium of Greenhouse Gas Emission Methodologies for the Oil and Gas Industry Table 4-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Xylene                         | 9.05E-04                              | 0.22             |                                          |
| <sup>1</sup> PM <sub>2.5</sub> emissions assumed equal to PM <sub>10</sub> emissions. <sup>2</sup> Assumes 12 hours per day for 14 days. <sup>3</sup> Compendium of Greenhouse Gas Emission Methodologies for the Oil and Gas Industry Table 4-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Notes:                         |                                       |                  |                                          |
| Assumes 12 hours per day for 14 days.  Compendium of Greenhouse Gas Emission Methodologies for the Oil and Gas Industry Table 4-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                | ed equal to PM <sub>10</sub> emission | ns.              |                                          |
| <sup>3</sup> Compendium of Greenhouse Gas Emission Methodologies for the Oil and Gas Industry Table 4-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | =                              |                                       |                  |                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ·                              | •                                     | dologies for the | Oil and Gas Industry Table 4-5           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | •                              |                                       |                  | and the modern radio is                  |

| Table 5.15            |                              |                 |                  |              |           |             |          |             |              |            |          |
|-----------------------|------------------------------|-----------------|------------------|--------------|-----------|-------------|----------|-------------|--------------|------------|----------|
| Emission Source:      | PRODUCTION - HEATER/T        | REATER EMIS     | SIONS            |              |           |             |          |             |              |            |          |
| Emission Factor From: | AP-42, Section 1.4 (EPA 19   | 998)            |                  |              |           |             |          |             |              |            |          |
|                       | "Natural Gas Combustion"     | ,               |                  |              |           |             |          |             |              |            |          |
| Emission Equation:    | Emissions (TPY) = Emission   | n Factor (lbs/N | //Mscf) x Fuel H | eating Value | (Btu/scf) | K Heat Rate | (MMBtu/h | ) x Hours o | of Operation | (hrs/yr) / | 2000 lbs |
| Data:                 | Fuel Heating Value =         | 1020            | Btu/scf          |              |           |             |          |             |              |            |          |
|                       | Heat Rate =                  | 0.5             | MMBtu/hr         |              |           |             |          |             |              |            |          |
|                       | Hours of Operation =         | 8760            | hrs/yr           |              |           |             |          |             |              |            |          |
| Assumptions:          | 500K BTU/hr heater/treater;  | Operates year   | round            |              |           |             |          |             |              |            |          |
|                       | Emission Factor <sup>1</sup> | Emissions       | Emissions        |              |           |             |          |             |              |            |          |
| Pollutant             | (lb/MMscf)                   | (lb/hr)         | (lb/well pad)    |              |           |             |          |             |              |            |          |
| CO                    | 84                           | 0.04            | 360.71           |              |           |             |          |             |              |            |          |
| NOx                   | 100                          | 0.05            | 429.41           |              |           |             |          |             |              |            |          |
| PM10                  | 7.6                          | 0.00            | 32.64            |              |           |             |          |             |              |            |          |
| PM2.5                 | 7.6                          | 3.73E-03        | 32.64            |              |           |             |          |             |              |            |          |
| SO2                   | 0.6                          | 0.00            | 2.58             |              |           |             |          |             |              |            |          |
| VOC                   | 5.5                          | 2.70E-03        | 23.62            |              |           |             |          |             |              |            |          |
| CO2                   | 120000                       | 58.82           | 515,294.12       |              |           |             |          |             |              |            |          |
| CH4                   | 2.3                          | 0.00            | 9.88             |              |           |             |          |             |              |            |          |
| N2O                   | 2.2                          | 0.00            | 9.45             |              |           |             |          |             |              |            |          |
| Formaldehyde          | 0.075                        | 0.00            | 0.32             |              |           |             |          |             |              |            |          |
| Benzene               | 0.0021                       | 0.00            | 0.01             |              |           |             |          |             |              |            |          |
| Ethylbenzene          | NA                           | NA              | NA               |              |           |             |          |             |              |            |          |
| Toluene               | 0.0034                       | 0.00            | 0.01             |              |           |             |          |             |              |            |          |
| Xylene                | NA                           | NA              | NA               |              |           |             |          |             |              |            |          |

| Table 5.16                 |                      |                  |                        |                      |                    |              |
|----------------------------|----------------------|------------------|------------------------|----------------------|--------------------|--------------|
| Emission Source:           | PRODUCTION - \       | WELL PAD TAN     | NKS                    |                      |                    |              |
| Emission Factor From:      | APCD's PS Mem        | o 05-01 docume   | ent, Section 4.1       | for remainder of Co  | olorado            |              |
| Assumptions:               | 4 - 400 bbl Conde    | nsate Tanks      |                        |                      |                    |              |
|                            | 2 - 400 bbl Produc   | ced Water Tank   | s <sup>1</sup>         |                      |                    |              |
|                            | Condensate Throu     | ıghput:          | 150                    | bbl/day/pad          |                    |              |
| Data:                      | Condensate Throu     | ughput:          | 4500                   | bbl/month/pad        |                    |              |
|                            | Condensate Throu     | ughput:          | 54000                  | bbl/year/pad         |                    |              |
|                            | Control efficiency   | 2 (%):           | 95%                    |                      |                    |              |
|                            |                      | Uncontrolled     | Controlled             |                      | Uncontrolled       | Controlled   |
|                            | Emission Factor      | Emissions        | Emissions <sup>2</sup> | Emissions            | Emissions          | Emissions    |
| Pollutant                  | (lbs/bbl)            | (lb/pad)         | (lb/pad)               | (lb/hr)              | (tons/yr)          | (tons/yr)    |
| VOC                        | 11.8                 | 637,200.00       | 31,860.00              | 72.74                | 318.60             | 15.93        |
| Benzene                    | 0.034                | 1,836.00         | 91.80                  | 0.21                 | 0.92               | 0.92         |
| n-Hexane                   | 0.185                | 9,990.00         | 499.50                 | 1.14                 | 5.00               | 5.00         |
| Notes:                     |                      |                  |                        |                      |                    |              |
| 1 Produced water tanks are | e assumed to have r  | ninimal emissio  | ns and they are        | not quantified.      |                    |              |
| Assumed to have 95% co     | ntrol based on (CPD  | HE 2007) Regu    | lation 7 "Emissi       | ions of Volatile Org | ganic Compounds (5 | CCR 1001-9)" |
| Effective Statewide Ma     | ay 1, 2008 (CPDHE 2  | 2007 Reg 7, Se   | c XVII)                |                      |                    |              |
| 95 percent on Condens      | sate Tank (with unco | ontrolled VOC er | missions >20 TI        | PY)                  |                    |              |

| Emission Source:      | PRODUCTION - GAS GENER         | ATOP1         |                   |           |           |
|-----------------------|--------------------------------|---------------|-------------------|-----------|-----------|
| Lillission Source.    | FRODUCTION - GAS GENE          | KATOK         |                   |           |           |
| Emission Factor From: | AP-42, Section 3.2 (EPA 200    | 0)            |                   |           |           |
|                       | "Natural Gas-fired Reciprocati | ing Engines"  |                   |           |           |
| Assumptions:          | Gas Generator Power:           | 25            | kW                |           |           |
|                       | Horsepower:                    | 33.5          | hp                |           |           |
|                       | Heat Rate:                     | 0.0853        | MMBtu/hr          |           |           |
| Emission Equation:    | Emissions (lb/hr) = EF (lbs/M  | MBtu) x MMBtu | u/hr x 8760 hrs / | 2000 lbs  |           |
|                       | Emission Factor                | Emissions     | Emissions         | Emissions | Emissions |
| Pollutant             | (lb/MMBtu)                     | (lb/hr)       | (lb/yr)           | (tons/yr) | (lb/well) |
| CO                    | 3.17E-01                       | 2.70E-02      | 236.87            | 0.12      | 236.87    |
| NO <sub>x</sub>       | 4.08                           | 3.48E-01      | 3,048.69          | 1.52      | 3,048.69  |
| SO <sub>2</sub>       | 5.88E-04                       | 5.02E-05      | 0.44              | 0.00      | 0.44      |
| PM <sub>10</sub>      | 7.71E-05                       | 6.58E-06      | 0.06              | 0.00      | 0.06      |
| PM <sub>2.5</sub>     | 7.71E-05                       | 6.58E-06      | 0.06              | 0.00      | 0.06      |
| CO <sub>2</sub>       | 1.10E+02                       | 9.38E+00      | 82,195.08         | 41.10     | 82,195.08 |
| Benzene               | 4.40E-04                       | 3.75E-05      | 0.33              | 0.00      | 0.33      |
| Ethylbenzene          | 3.97E-05                       | 3.39E-06      | 0.03              | 0.00      | 0.03      |
| Form.                 | 5.52E-02                       | 4.71E-03      | 41.25             | 0.02      | 41.25     |
| Hexane                | 4.45E-04                       | 3.80E-05      | 0.33              | 0.00      | 0.33      |
| Toluene               | 4.08E-04                       | 3.48E-05      | 0.30              | 0.00      | 0.30      |
| Xylene                | 1.84E-04                       | 1.57E-05      | 0.14              | 0.00      | 0.14      |

| Table 5.                        | .18                                          |                            |                  |                       |                        |                |                      |              |
|---------------------------------|----------------------------------------------|----------------------------|------------------|-----------------------|------------------------|----------------|----------------------|--------------|
| Emissio                         | n Source:                                    | PRODUCTION                 | N - WIND EROS    | SION                  |                        |                |                      |              |
|                                 |                                              |                            |                  |                       |                        |                |                      |              |
| Emission                        | n Factor From:                               |                            | -008 (EPA 199    |                       |                        |                |                      |              |
|                                 |                                              | "Control of Fu             | gitive Dust Sou  | rces"                 |                        |                |                      |              |
| Emissio                         | n Equation:                                  | TSD (lb/acro/r             | nonth) = 1 7 x / | (s/1.5) x ([365-p]/23 | 25\ v (f/15\           |                |                      |              |
| LIIIISSIUI                      | iii Equation.                                |                            |                  | sturbed acreage x 1   |                        | ) lhe          |                      |              |
|                                 |                                              | LIIII33IOII3 (II           | 1) = 131 X dis   | stuibed acreage x     | 12 111011(113 / 2000   | 7 103          |                      |              |
| Where:                          |                                              | s =                        | silt content (pe | ercent)               |                        |                |                      |              |
|                                 |                                              |                            |                  | s with >.001 in pred  | cipitation (not us     | sed)           |                      |              |
|                                 |                                              |                            |                  | wind speed >5.4 (     |                        |                |                      |              |
|                                 |                                              |                            |                  |                       |                        |                |                      |              |
| Data:                           |                                              | s =                        |                  | percent silt (avera   |                        |                |                      |              |
|                                 |                                              | f =                        | 36.6             | percent of time wi    |                        |                |                      |              |
|                                 |                                              |                            |                  | from Rock Springs     | FAA Airport (W         | yoming)1985,   | , 1987-1990          |              |
|                                 | Distu                                        | irbed acreage=             | 8                | acres                 |                        |                |                      |              |
|                                 |                                              | TSP =                      | 95.0             | (lb/o ovo/m o náb)    |                        |                |                      |              |
|                                 |                                              | 137 =                      | 65.9             | (lb/acre/month)       |                        |                |                      |              |
| Assume                          | Control Efficiency:                          |                            | 80%              | for watering          |                        |                |                      |              |
|                                 | tions per pad/road:                          |                            |                  | ell pad (assumes 4    | acre drill pad, 2      | acre road, 2 a | acre other infrastru | ucture)      |
|                                 | •                                            |                            |                  |                       |                        |                |                      |              |
|                                 |                                              |                            | Uncontrolled     | Uncontrolled          | Controlled             |                |                      |              |
|                                 |                                              | Conversion                 | Emissions        | Emissions             | Emissions <sup>2</sup> |                |                      |              |
|                                 | Particulate                                  | Factor <sup>1</sup>        | (lb/month)       | (lb/year)             | (lbs/pad/year)         |                |                      |              |
| TSP                             |                                              | na                         | 687.21           | 8,247                 | 6,597.26               |                |                      |              |
| $PM_{10}$                       |                                              | 0.25                       | 171.80           | 2,062                 | 1,649.32               |                |                      |              |
| PM <sub>2.5</sub>               |                                              | 0.15                       | 103.08           | 1,237                 | 989.59                 |                |                      |              |
|                                 |                                              |                            |                  |                       |                        |                |                      |              |
| Notes:                          |                                              |                            |                  |                       |                        |                |                      |              |
| <sup>1</sup> PM <sub>10</sub> = | = $0.25*TSP$ ; $PM_{2.5} = 0$                | 0.15*PM <sub>10</sub> This | conversion fac   | tor came from AP-4    | 42 13.2.2 backgr       | ound docume    | nt "Background Γ     | Occument for |
| Revision                        |                                              |                            |                  |                       |                        |                |                      |              |
|                                 | to Fine Fraction Ratio                       | s Used for AP-             | 42 Fugitive Dus  | t Emission Factors    | s" (2006).             |                |                      |              |
| -                               | to Fine Fraction Rationes 50% control by wat |                            | 42 Fugitive Dus  | t Emission Factors    | s" (2006).             |                |                      |              |
| -                               |                                              |                            | 42 Fugitive Dus  | t Emission Factors    | 8" (2006).             |                |                      |              |
| _                               | nes 50% control by wat                       | tering                     | 42 Fugitive Dus  | t Emission Factors    | " (2006).              |                |                      |              |
| _                               | nes 50% control by wat                       | tering<br>37.82            | 42 Fugitive Dus  | t Emission Factors    | " (2006).              |                |                      |              |
| _                               | nes 50% control by wat<br>1985<br>1986       | 37.82<br>27.95             |                  | t Emission Factors    | " (2006).              |                |                      |              |
| _                               | nes 50% control by wat                       | 37.82<br>27.95<br>38.88    | 42 Fugitive Dus  | t Emission Factors    | " (2006).              |                |                      |              |

| Table 5.19                                          |                           |                                   |                  |                  |                      |                    |            |          |          |              |              |            |            |
|-----------------------------------------------------|---------------------------|-----------------------------------|------------------|------------------|----------------------|--------------------|------------|----------|----------|--------------|--------------|------------|------------|
| Emission Source:                                    | WELL PRODU                | JCTION - VEH                      | ICLE ROAD D      | UST EMISSIO      | NS                   |                    |            |          |          |              |              |            |            |
| Emission Factor From:                               | AP-42, Section            | n 12 2 2 (EDA                     | 3006)            |                  |                      |                    |            |          |          |              |              |            |            |
| Ellission Factor From.                              | "Unpaved Road             |                                   |                  |                  |                      |                    |            |          |          |              |              |            |            |
|                                                     | Unpaved Road              | us – iriuustriai                  | Toaus            |                  |                      |                    |            |          |          |              |              |            |            |
| Emission Factor Equation:                           | $E = k \times (s/12)^{6}$ | <sup>a</sup> x (W/3) <sup>b</sup> |                  |                  |                      |                    |            |          |          |              |              |            |            |
| Where:                                              | E =                       | Size-specific e                   | emission facto   | r (lb/VMT)       |                      |                    |            |          |          |              |              |            |            |
|                                                     | s =                       | Surface mater                     | ial silt content | (%)              |                      |                    |            |          |          |              |              |            |            |
|                                                     | W =                       | Mean vehicle                      | weight (tons)    |                  |                      |                    |            |          |          |              |              |            |            |
|                                                     | k =                       | Empirical cons                    | stant, particle  | size multiplier  |                      |                    |            |          |          |              |              |            |            |
|                                                     | a =                       | Empirical cons                    | stant            |                  |                      |                    |            |          |          |              |              |            |            |
|                                                     | b =                       | Empirical cons                    | stant            |                  |                      |                    |            |          |          |              |              |            |            |
|                                                     |                           |                                   |                  |                  |                      |                    |            |          |          |              |              |            |            |
| Data:                                               | k =                       |                                   | for PM10         |                  |                      |                    |            |          |          |              |              |            |            |
|                                                     | k =                       |                                   | for PM2.5        |                  |                      |                    |            |          |          |              |              |            |            |
|                                                     | a=                        |                                   | for PM10 and     |                  |                      |                    |            |          |          |              |              |            |            |
|                                                     | b=                        | 0.45                              | for PM10 and     | PM2.5            |                      |                    |            |          |          |              |              |            |            |
|                                                     |                           |                                   |                  |                  |                      | Vehicle Miles      |            | PM10     | PM2.5    | Uncontrolled | Uncontrolled | Controlled | Controlled |
|                                                     | Number of                 |                                   | Total            |                  | Silt                 | Travelled per      |            | Emission | Emission | PM10         | PM2.5        | PM10       | PM2.5      |
|                                                     | Round Trips               | Number of                         |                  | Mean Vehicle     | Content <sup>1</sup> | Vehicle            | Control    | Factor   | Factor   | Emissions    | Emissions    | Emissions  | Emissions  |
| Vehicle                                             | per Week                  | Vehicles                          |                  | Weight (tons)    | (%)                  | (VMT/vehicle)      | Efficiency | (lb/VMT) | (lb/VMT) | (lbs/pad)    | (lbs/pad)    | (lbs/pad)  | (lbs/pad)  |
| Water truck                                         | 2                         | 1                                 | 104              | 40               | 8.4                  | 6                  | 80%        | 3.49     | 0.35     | 2178         | 218          | 1743       | 174        |
| Condensate truck                                    | 3                         | 1                                 | 156              | 40               | 8.4                  | 6                  | 80%        | 3.49     | 0.35     | 3267         | 327          | 2614       | 261        |
| Light duty vehicles (employee access)               | 7                         | 1                                 | 364              | 46               | 8.4                  | 6                  | 80%        | 3.72     | 0.37     | 8118         | 812          | 6495       | 649        |
| TOTAL                                               |                           |                                   |                  |                  |                      |                    |            |          |          | 13564        | 1356         | 10851      | 1085       |
|                                                     |                           |                                   |                  |                  |                      |                    |            |          |          |              |              |            |            |
| <sup>1</sup> Silt content from AP-42 Table 13.2.2-1 | for a haul road.          | (replaced free                    | shly graded, us  | sed for construc | ction, but r         | not production!!!) |            |          |          |              |              |            |            |

truck, LDGT Gasoline light truck, LDDT Diesel light truck), Default Fuel Economy Factors for Different Types of Mobile Sources, American Petroleum Institute (2004).

truck, LDGT Gasoline light truck, LDDT Diesel light truck), Default Fuel Economy Factors for Different Types of Mobile Sources, American Petroleum Institute (2004).

3 AP-42, Section 3.3, "Gasoline and Diesel Industrial Engines. Table 3.3-2, "Speciated Organic Compound Emission Factors for Uncontrolled Diesel Engines"

| Table 5.20                                     |              |               |               |                    |               |               |                      |                  |                  |                   |                      |                      |                     |            |                 |                |             |              |
|------------------------------------------------|--------------|---------------|---------------|--------------------|---------------|---------------|----------------------|------------------|------------------|-------------------|----------------------|----------------------|---------------------|------------|-----------------|----------------|-------------|--------------|
| mission Source:                                | WELL PR      | ODUCTION      | - VEHICLE     | EXHAUST EN         | IISSIONS      |               |                      |                  |                  |                   |                      |                      |                     |            |                 |                |             |              |
| Emission Equation:                             | Emissions    | (TDV) = grs   | me/\/MT v \   | VMT / 453.59       | arame / 200   | Ω Ibe         |                      |                  |                  |                   |                      |                      |                     |            |                 |                |             |              |
| imsaon Equation.                               | LIIII3310113 | (11 1) = gia  | IIII NIVIII A | V W 1 7 433.33     | giailis / 200 | JO 103        |                      |                  |                  |                   |                      |                      |                     |            |                 |                |             |              |
|                                                |              |               |               | E                  | mission Fa    | actors (g/VIV | IT) <sup>1,2,3</sup> |                  |                  |                   |                      |                      |                     |            |                 |                |             |              |
| Equipment                                      | CO           | NOx           | PM10          | PM2.5 <sup>4</sup> | SO2           | VOC           | CO2 <sup>5</sup>     | CH4 <sup>6</sup> | N2O <sup>7</sup> | Formaldehyde8     | Benzene <sup>8</sup> | Toluene <sup>8</sup> | Xylene <sup>8</sup> |            |                 |                |             |              |
| HD Diesel Engine Trucks                        |              |               |               |                    |               |               |                      |                  |                  |                   |                      |                      |                     |            |                 |                |             |              |
| (HDDV)                                         | 17.06        | 6.49          | n/a           | n/a                | 0.32          | 4.82          | 1700                 | 0.070            | 0.0432           | 0.0107            | 0.0085               | 0.00371              | 0.0026              |            |                 |                |             |              |
| D Diesel Trucks (60                            |              |               |               |                    |               |               |                      |                  |                  |                   |                      |                      |                     |            |                 |                |             |              |
| percent)9(LDDV)                                | 2.53         | 1.18          | n/a           | n/a                | n/a           | 0.74          | 230                  | 0.018            | 0.0505           | 0.0286            | 0.0148               | 0.00371              | 0.0026              |            |                 |                |             |              |
| LD Gas Trucks (40 percent)                     |              |               |               |                    |               |               |                      |                  |                  |                   |                      |                      |                     |            |                 |                |             |              |
| (LDGV)                                         | 9.659        | 0.651         | n/a           | n/a                | n/a           | 0.562         | 330                  | 0.119            | 0.0541           | 0.0085            | 0.0151               | 0.00371              | 0.0026              |            |                 |                |             |              |
|                                                |              |               |               |                    |               |               |                      |                  |                  |                   |                      |                      |                     |            |                 |                |             |              |
|                                                |              |               | Number of     | Round Trip         |               |               |                      |                  |                  |                   | Pollutant E          | missions (It         | s/well pad)         |            |                 |                |             |              |
|                                                |              | Number of     | Round         | Distance           | VMT           |               |                      |                  |                  |                   |                      |                      |                     |            |                 |                |             |              |
| Equipment                                      | Vehicle      | Vehicles      | Trips Per     | (mi)               | (mi)          | CO            | NOx                  | PM10             | PM2.5            | SO2 <sup>10</sup> | VOC                  | CO2                  | CH4                 | N2O        | Formaldehyde    | Benzene        | Toluene     | Xylene       |
| Water truck (process water                     |              |               |               |                    |               |               |                      |                  |                  |                   |                      |                      |                     |            |                 |                |             |              |
| removal)                                       | HDDV         | 1             | 2             | 6                  | 624           | 23.5          | 8.9                  | na               | na               | 0.01              | 7                    | 2,339                | 0.10                | 0.06       | 0.01            | 0.01           | 0.01        | 0.00         |
| Condensate truck (condensate                   | HDDV         |               | _             |                    | 000           | 25.0          | 40.4                 |                  |                  | 0.00              | 40                   | 0.500                | 0.45                | 0.00       | 0.00            | 0.00           | 0.04        | 0.04         |
| removal)                                       | HDDV         | 1             | 3             | 6                  | 936           | 35.2          | 13.4                 | na               | na               | 0.02              | 10                   | 3,508                | 0.15                | 0.09       | 0.02            | 0.02           | 0.01        | 0.01         |
| light duty vehicles (employee access) - Diesel | LDDV         | 1             | 7             | 6                  | 2,184         | 12.2          | 5.7                  | na               | na               | na                | 4                    | 1.107                | 0.09                | 0.24       | 0.14            | 0.07           | 0.02        | 0.01         |
| light duty vehicles (employee                  | LDDV         | '             | ,             | 0                  | 2,104         | 12.2          | 5.7                  | IIa              | Ha               | i ia              | -                    | 1,107                | 0.09                | 0.24       | 0.14            | 0.07           | 0.02        | 0.01         |
| access) - Gas                                  | LDGV         | 1             | 7             | 6                  | 2.184         | 46.5          | 3.1                  | na               | na               | na                | 3                    | 1.589                | 0.57                | 0.26       | 0.04            | 0.07           | 0.02        | 0.01         |
| TOTAL (POUNDS)                                 | 2501         | <u> </u>      |               | ŭ                  | 2,101         | 70.9          | 28.0                 | 0                | 0                | 0.03              | 20                   | 8,543                | 0.90                | 0.65       | 0.22            | 0.17           | 0.05        | 0.03         |
|                                                |              |               |               |                    |               |               |                      |                  |                  |                   |                      |                      |                     |            |                 |                |             |              |
| Notes:                                         |              |               |               |                    |               |               |                      |                  |                  |                   |                      |                      |                     |            |                 |                |             |              |
| AP-42, Volume II - Mobile Sou                  | rces, Appen  | ndix H, "Hea  | y Duty Dies   | el Trucks" hig     | h altitude, " | aged" with 5  | 0,000 miles          | service, 20      | 01+ model        | year (EPA 1995)   | ).                   |                      |                     |            |                 |                |             |              |
| AP-42, Volume II - Mobile Sou                  | rces, Apper  | ndix H, "Ligh | t Duty Diese  | el Trucks" high    | altitude, "a  | ged" with 50  | 0,000 miles          | service, 199     | 90+ model y      | ear for NOx, 198  | 34+ model y          | ear for CO a         | nd HC (EPA          | 1995).     |                 |                |             |              |
| AP-42, Volume II - Mobile Sou                  | rces, Apper  | ndix H, "Ligh | t Duty Gaso   | line Trucks I"     | high altitude | e, "aged" wit | h 50,000 m           | les service,     | 1998+ mod        | lel year (EPA 19  | 95).                 |                      | ,                   |            |                 |                |             |              |
| PM2.5 emissions assumed eq                     |              |               |               |                    |               |               |                      |                  |                  | . ,               |                      |                      |                     |            |                 |                |             |              |
| Compendium of Greenhouse G                     |              |               |               |                    |               |               | DV diesel r          | on-semi tru      | ick. LDGT a      | verage gasoline   | car. LDDV la         | arge diesel o        | ar). CO2 M          | obile Sour | ce Emission Fac | ctors. America | n Petroleum | Institute (2 |
| Compendium of Greenhouse G                     |              |               |               |                    |               |               |                      |                  |                  |                   |                      | -                    | -,-                 |            |                 |                |             |              |

7 Compendium of Greenhouse Gas Emission Methodologies for the Oil and Gas Industry for N2O, Table 4-9 (HDDV moderate control, LDGT oxidation catalyst, LDDT moderate control), Mobile Source Combustion Emission Factors, Table 4-10 (HDDV Diesel heavy

10 Included in the Pollutant Emissions is the Ultra Low Sulfur adjustment based on 15 ppm Ultra Low Sulfur diesel fuel sulfur content compared to 500 ppm (0.05 percent) #2 diesel fuel sulfur content (15 / 500 = 0.03).

For light duty vehicles (pickup trucks), 60 percent would be diesel-powered, and 40 percent would be gas.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                  |                                                                                |                                                                                                     |                                                                                                                                         |                                                                                                                                                  |                                                                                                                                       |                                                                                              | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                               |                                                                |                            |                                                  |                                                                                                                                              |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                  |                                                                                |                                                                                                     |                                                                                                                                         | Е                                                                                                                                                | missions by                                                                                                                           | Source Categor                                                                               | y (lbs/well)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                               |                                                                |                            |                                                  |                                                                                                                                              |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Source Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | со                                                               | NOx                                                                            | SO <sub>2</sub>                                                                                     | PM <sub>10</sub>                                                                                                                        | PM <sub>2.5</sub>                                                                                                                                | VOCs                                                                                                                                  | Formaldehyde                                                                                 | Benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Toluene                                                                       | Xylene                                                         | Ethylbenzene               | Hexane                                           | CO <sub>2</sub>                                                                                                                              | CH₄                                                                                 | N <sub>2</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| /ell Pad Construction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                  |                                                                                |                                                                                                     |                                                                                                                                         |                                                                                                                                                  |                                                                                                                                       |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                               |                                                                |                            |                                                  |                                                                                                                                              |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| General Activity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                  |                                                                                |                                                                                                     | 368.22                                                                                                                                  | 55.23                                                                                                                                            |                                                                                                                                       |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                               |                                                                |                            |                                                  |                                                                                                                                              |                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Vehicle Road Dust                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                  |                                                                                |                                                                                                     | 4,493.57                                                                                                                                | 449.36                                                                                                                                           |                                                                                                                                       |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                               |                                                                |                            | -                                                |                                                                                                                                              |                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Equipment Exhaust                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 104.85                                                           | 342.65                                                                         | 33.76                                                                                               | 33.76                                                                                                                                   | 1.19                                                                                                                                             | 28.49                                                                                                                                 | 0.17                                                                                         | 0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.06                                                                          | 0.04                                                           | -                          | -                                                | 23.506                                                                                                                                       | 1.13                                                                                | 0.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Vehicle Exhaust                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 27.76                                                            | 10.30                                                                          | 0.01                                                                                                |                                                                                                                                         |                                                                                                                                                  | 7.64                                                                                                                                  | 0.02                                                                                         | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0065                                                                        | 0.0045                                                         | -                          | -                                                | 2,705                                                                                                                                        | 0.12                                                                                | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Subtotal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 132.61                                                           | 352.95                                                                         | 33.77                                                                                               | 4,895.55                                                                                                                                | 505.78                                                                                                                                           | 36.13                                                                                                                                 | 0.19                                                                                         | 0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.06                                                                          | 0.05                                                           | 0.00                       | 0.00                                             | 26,211.35                                                                                                                                    | 1.26                                                                                | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| /ell Construction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 102.01                                                           | 002.00                                                                         | 00.77                                                                                               | 4,000.00                                                                                                                                | 000.70                                                                                                                                           | 00.10                                                                                                                                 | 0.10                                                                                         | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.00                                                                          | 0.00                                                           | 0.00                       | 0.00                                             | 20,211100                                                                                                                                    |                                                                                     | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Vehicle Road Dust                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                  |                                                                                |                                                                                                     | 5.46                                                                                                                                    | 0.55                                                                                                                                             |                                                                                                                                       |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                               |                                                                |                            |                                                  |                                                                                                                                              |                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Vehicle Road Bust<br>Vehicle Exhaust                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 47.22                                                            | 14.40                                                                          | 0.00                                                                                                | 0.00                                                                                                                                    | 0.05                                                                                                                                             | 10.26                                                                                                                                 | 0.14                                                                                         | 0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.03                                                                          | 0.02                                                           |                            | -                                                | 3,687                                                                                                                                        | 0.34                                                                                | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Drilling Engines - Tier 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7.346.19                                                         | 10.736.74                                                                      | 78.82                                                                                               | 423.82                                                                                                                                  | 423.82                                                                                                                                           | 2.825.46                                                                                                                              | 10.59                                                                                        | 8.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.67                                                                          | 2.56                                                           | -                          |                                                  | 1,473,840                                                                                                                                    | 71.09                                                                               | 43.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Drilling Engines - Tier 4a (2011)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7,346.19                                                         | 7,346.19                                                                       | 78.82                                                                                               | 211.91                                                                                                                                  | 211.91                                                                                                                                           | 847.64                                                                                                                                | 10.59                                                                                        | 8.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.67                                                                          | 2.56                                                           | -                          |                                                  | 1,473,840                                                                                                                                    | 71.09                                                                               | 43.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Drilling Engines - Tier 4a (2011)  Drilling Engines - Tier 4b (2015)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7,346.19                                                         | 7,346.19                                                                       | 78.82                                                                                               | 62.16                                                                                                                                   | 62.16                                                                                                                                            | 395.56                                                                                                                                | 10.59                                                                                        | 8.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.67                                                                          | 2.56                                                           |                            |                                                  | 1,473,840                                                                                                                                    | 71.09                                                                               | 43.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                  |                                                                                |                                                                                                     |                                                                                                                                         |                                                                                                                                                  |                                                                                                                                       |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                               |                                                                |                            |                                                  |                                                                                                                                              |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7,393.41                                                         | 10,751.15                                                                      | 78.82                                                                                               | 429.28                                                                                                                                  | 424.42                                                                                                                                           | 2,835.72                                                                                                                              | 10.73                                                                                        | 8.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.69                                                                          | 2.57                                                           | 0.00                       | 0.00                                             | 1,477,526.72                                                                                                                                 | 71.43                                                                               | 44.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| completion and Testing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                  |                                                                                |                                                                                                     |                                                                                                                                         |                                                                                                                                                  |                                                                                                                                       |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                               |                                                                |                            |                                                  |                                                                                                                                              |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Flaring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 33.60                                                            | 40.00                                                                          | 0                                                                                                   | 3.04                                                                                                                                    | 3.04                                                                                                                                             | 2.20                                                                                                                                  |                                                                                              | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.00                                                                          |                                                                |                            | 1.81                                             | 48,000                                                                                                                                       | 0.92                                                                                | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Waste Pond Evaporation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                  |                                                                                |                                                                                                     |                                                                                                                                         |                                                                                                                                                  | 700.00                                                                                                                                |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                               |                                                                |                            | -                                                |                                                                                                                                              |                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Vehicle Road Dust                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                  |                                                                                |                                                                                                     | 14,044.29                                                                                                                               | 1,404.43                                                                                                                                         |                                                                                                                                       |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                               |                                                                |                            | -                                                |                                                                                                                                              |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Vehicle Exhaust                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 71.20                                                            | 25.72                                                                          | 0.04                                                                                                |                                                                                                                                         |                                                                                                                                                  | 19.00                                                                                                                                 | 0.07                                                                                         | 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.02                                                                          | 0.01                                                           |                            |                                                  | 6,737                                                                                                                                        | 0.34                                                                                | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Frac Pump Engines                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 740.68                                                           | 3,437.28                                                                       | 227.30                                                                                              | 243.94                                                                                                                                  | 243.94                                                                                                                                           | 278.76                                                                                                                                | 0.92                                                                                         | 0.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.32                                                                          | 0.22                                                           |                            |                                                  | 127,512                                                                                                                                      | 28.31                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Subtotal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 845.48                                                           | 3,503.00                                                                       | 227.58                                                                                              | 14,291.27                                                                                                                               | 1,651.41                                                                                                                                         | 999.96                                                                                                                                | 0.07                                                                                         | 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.02                                                                          | 0.01                                                           | 0.00                       | 1.81                                             | 54,736.92                                                                                                                                    | 1.26                                                                                | 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| CONSTRUCTION TOTAL <sup>1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8,371.49                                                         | 14,607.09                                                                      | 340.17                                                                                              | 19,616.09                                                                                                                               | 2,581.60                                                                                                                                         | 3,871.81                                                                                                                              | 10.99                                                                                        | 8.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.78                                                                          | 2.63                                                           | 0.00                       | 1.81                                             | 1,558,474.99                                                                                                                                 | 73.95                                                                               | 45.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| /ell Production                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _,00                                                             | . 1,001.00                                                                     | 3-10.17                                                                                             | .0,0.0.00                                                                                                                               | _,0000                                                                                                                                           | 3,07 1.01                                                                                                                             |                                                                                              | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | J                                                                             | 2.00                                                           | 0.00                       |                                                  | .,000,-11.00                                                                                                                                 |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Heater/Treater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 360.71                                                           | 429.41                                                                         | 2.5765                                                                                              | 32.6353                                                                                                                                 | 32.6353                                                                                                                                          | 23.6176                                                                                                                               | 0.32                                                                                         | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.01                                                                          | -                                                              | -                          | -                                                | 515,294                                                                                                                                      | 9.88                                                                                | 9.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Condensate Tanks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 500.77                                                           | 723.71                                                                         | 2.5705                                                                                              | 32.0333                                                                                                                                 | 32.0333                                                                                                                                          |                                                                                                                                       | 0.02                                                                                         | 91.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.01                                                                          | -                                                              |                            | 499.50                                           | 313,234                                                                                                                                      | 9.00                                                                                | 3.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Gas Generator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 226.07                                                           | 2 049 60                                                                       | 0.44                                                                                                | 0.06                                                                                                                                    | 0.06                                                                                                                                             | 31,860.00                                                                                                                             | 41.25                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.20                                                                          | 0.14                                                           |                            |                                                  | 92.105                                                                                                                                       |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 236.87                                                           | 3,048.69                                                                       | 0.44                                                                                                | 1.649.32                                                                                                                                |                                                                                                                                                  | -                                                                                                                                     | 41.25                                                                                        | 0.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.30                                                                          | 0.14                                                           | 0.03                       | 0.33                                             | 82,195                                                                                                                                       |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Wind Blown Dust                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                  |                                                                                |                                                                                                     |                                                                                                                                         | 989.59                                                                                                                                           | -                                                                                                                                     |                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                               |                                                                |                            | -                                                |                                                                                                                                              |                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Vehicle Road Dust                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                  |                                                                                |                                                                                                     | 10,850.98                                                                                                                               | 1,085.10                                                                                                                                         |                                                                                                                                       |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                               |                                                                |                            |                                                  |                                                                                                                                              |                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Vehicle Exhaust                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 70.86                                                            | 28.00                                                                          | 0.03                                                                                                |                                                                                                                                         |                                                                                                                                                  | 20.14                                                                                                                                 | 0.22                                                                                         | 0.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.05                                                                          | 0.03                                                           |                            |                                                  | 8,543                                                                                                                                        | 0.90                                                                                | 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Subtotal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 668.43                                                           | 3,506.10                                                                       | 3.05                                                                                                | 12,532.99                                                                                                                               | 2,107.38                                                                                                                                         | 31,903.76                                                                                                                             | 41.78                                                                                        | 92.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.37                                                                          | 0.17                                                           | 0.03                       | 499.83                                           | 606,032.24                                                                                                                                   | 10.78                                                                               | 10.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| PRODUCTION TOTAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 668.43                                                           | 3,506.10                                                                       | 3.05                                                                                                | 12,532.99                                                                                                                               | 2,107.38                                                                                                                                         | 31,903.76                                                                                                                             | 41.78                                                                                        | 92.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.37                                                                          | 0.17                                                           | 0.03                       | 499.83                                           | 606,032.24                                                                                                                                   | 10.78                                                                               | 10.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| CONSTRUCTION AND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                  |                                                                                |                                                                                                     |                                                                                                                                         |                                                                                                                                                  |                                                                                                                                       |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                               |                                                                |                            |                                                  |                                                                                                                                              |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| PRODUCTION TOTAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9.039.92                                                         | 18,113.20                                                                      | 343.22                                                                                              | 32,149.08                                                                                                                               | 4.688.98                                                                                                                                         | 35,775.57                                                                                                                             | 52.78                                                                                        | 100.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.15                                                                          | 2.81                                                           | 0.03                       | 501.64                                           | 2,164,507.24                                                                                                                                 | 84.73                                                                               | 56.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                  |                                                                                |                                                                                                     |                                                                                                                                         |                                                                                                                                                  |                                                                                                                                       |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                               |                                                                |                            |                                                  |                                                                                                                                              |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| lotes:<br>Construction emissions are based on<br>rell pad construction.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | a per well c                                                     | onstructed/dr                                                                  | illed basis.                                                                                        | Construction                                                                                                                            | emissions o                                                                                                                                      | occur only in                                                                                                                         | the year that a we                                                                           | ell pad is cons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | structed and                                                                  | associated v                                                   | vells are drilled. A       | all drilling is a                                | assumed to be co                                                                                                                             | empleted in t                                                                       | ne year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| lotes:<br>Construction emissions are based on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | a per well c                                                     | onstructed/dri                                                                 | illed basis.                                                                                        | Construction                                                                                                                            |                                                                                                                                                  |                                                                                                                                       | the year that a we                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | structed and                                                                  | associated v                                                   | vells are drilled. A       | all drilling is a                                | assumed to be co                                                                                                                             | empleted in t                                                                       | ne year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| lotes: Construction emissions are based on ell pad construction.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                  |                                                                                |                                                                                                     |                                                                                                                                         | En                                                                                                                                               | nissions by                                                                                                                           | Source Category                                                                              | r (tons/well)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                               |                                                                |                            |                                                  |                                                                                                                                              |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| lotes: Construction emissions are based on ell pad construction.  Source Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | a per well c                                                     | onstructed/dri                                                                 | illed basis.                                                                                        | Construction                                                                                                                            |                                                                                                                                                  |                                                                                                                                       |                                                                                              | r (tons/well)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | structed and                                                                  | associated v                                                   | vells are drilled. A       | Ill drilling is a                                | cO <sub>2</sub>                                                                                                                              | ompleted in t                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| lotes: Construction emissions are based on rell pad construction.  Source Type Vell Pad Construction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | со                                                               | NO <sub>x</sub>                                                                | SO <sub>2</sub>                                                                                     | PM <sub>10</sub>                                                                                                                        | En                                                                                                                                               | vocs                                                                                                                                  | Source Category                                                                              | (tons/well) Benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Toluene                                                                       | Xylene                                                         | Ethylbenzene               | Hexane                                           | CO <sub>2</sub>                                                                                                                              | CH₄                                                                                 | N <sub>2</sub> C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| lotes:  Construction emissions are based on ell pad construction.  Source Type  Veil Pad Construction  General Activity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                  |                                                                                |                                                                                                     | PM <sub>10</sub>                                                                                                                        | PM <sub>2.5</sub>                                                                                                                                | nissions by                                                                                                                           | Source Category                                                                              | r (tons/well)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                               |                                                                |                            |                                                  |                                                                                                                                              |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| lotes: Construction emissions are based on rell pad construction.  Source Type Veil Pad Construction General Activity Vehicle Road Dust                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CO                                                               | NO <sub>x</sub>                                                                | SO <sub>2</sub>                                                                                     | PM <sub>10</sub> 0.1841 2.2468                                                                                                          | PM <sub>2.5</sub> 0.0276 0.2247                                                                                                                  | VOCs                                                                                                                                  | Source Category Formaldehyde                                                                 | (tons/well) Benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Toluene                                                                       | Xylene<br><br>                                                 | Ethylbenzene               | Hexane<br>                                       | CO <sub>2</sub>                                                                                                                              | CH₄<br>                                                                             | N <sub>2</sub> C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Iotes: Construction emissions are based on ell pad construction.  Source Type Vell Pad Construction General Activity Vehicle Road Dust Equipment Exhaust                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <br><br>0.0524                                                   | NO <sub>x</sub>                                                                | SO <sub>2</sub>                                                                                     | PM <sub>10</sub>                                                                                                                        | PM <sub>2.5</sub>                                                                                                                                | VOCs 0.0142                                                                                                                           | Formalde hyde 0.0001                                                                         | Benzene 0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <br><br>0.0000                                                                | <br><br>0.0000                                                 | Ethylbenzene               | Hexane<br>                                       | CO <sub>2</sub>                                                                                                                              | CH <sub>4</sub>                                                                     | N <sub>2</sub> C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| totes: Construction emissions are based on ell pad construction.  Source Type Vell Pad Construction General Activity Vehicle Road Dust Equipment Exhaust Vehicle Exhaust                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CO<br><br><br>0.0524<br>0.0139                                   | NO <sub>x</sub> 0.1713 0.0051                                                  | SO <sub>2</sub> 0.0169 0.0000                                                                       | PM <sub>10</sub> 0.1841 2.2468 0.0169                                                                                                   | PM <sub>2.5</sub> 0.0276 0.2247 0.0006                                                                                                           | VOCs 0.0142 0.0038                                                                                                                    | Formaldehyde 0.0001 0.0000                                                                   | (tons/well)  Benzene 0.0001 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <br><br>0.0000<br>0.0000                                                      | Xylene<br><br><br>0.0000<br>0.0000                             | Ethylbenzene               | Hexane<br><br>                                   | CO <sub>2</sub> 11.7530 1.3527                                                                                                               | CH <sub>4</sub> 0.0006 0.0001                                                       | N <sub>2</sub> C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| iotes: Construction emissions are based on ell pad construction.  Source Type  Vell Pad Construction General Activity Vehicle Road Dust Equipment Exhaust Vehicle Exhaust Subtotal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <br><br>0.0524                                                   | NO <sub>x</sub>                                                                | SO <sub>2</sub>                                                                                     | PM <sub>10</sub> 0.1841 2.2468                                                                                                          | PM <sub>2.5</sub> 0.0276 0.2247                                                                                                                  | VOCs 0.0142                                                                                                                           | Formalde hyde 0.0001                                                                         | Benzene 0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <br><br>0.0000                                                                | <br><br>0.0000                                                 | Ethylbenzene               | Hexane<br>                                       | CO <sub>2</sub>                                                                                                                              | CH <sub>4</sub>                                                                     | N <sub>2</sub> C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| totes: Construction emissions are based on ell pad construction.  Source Type Vell Pad Construction General Activity Vehicle Road Dust Equipment Exhaust Vehicle Takaust Subtotal Vell Construction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CO<br><br><br>0.0524<br>0.0139                                   | NO <sub>x</sub> 0.1713 0.0051                                                  | SO <sub>2</sub> 0.0169 0.0000 0.0169                                                                | PM <sub>10</sub> 0.1841 2.2468 0.0169 2.4478                                                                                            | PM <sub>2.5</sub> 0.0276 0.2247 0.0006 0.2529                                                                                                    | VOCs 0.0142 0.0038                                                                                                                    | Formaldehyde 0.0001 0.0000                                                                   | (tons/well)  Benzene 0.0001 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                               | Xylene<br><br><br>0.0000<br>0.0000                             | Ethylbenzene               | Hexane 0.0000                                    | CO <sub>2</sub> 11.7530 1.3527                                                                                                               | CH <sub>4</sub> 0.0006 0.0001                                                       | N <sub>2</sub> C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| iotes: Construction emissions are based on ell pad construction.  Source Type Vell Pad Construction General Activity Vehicle Road Dust Equipment Exhaust Vehicle Exhaust Subtotal Vell Construction Vehicle Road Dust                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <br>0.0524<br>0.0139<br>0.0663                                   | NO <sub>x</sub> 0.1713 0.0051 0.1765                                           | SO <sub>2</sub> 0.0169 0.0000 0.0169                                                                | PM <sub>10</sub> 0.1841 2.2468 0.0169 2.4478                                                                                            | PM <sub>2.5</sub> 0.0276 0.2247 0.0006 0.2529                                                                                                    | VOCs                                                                                                                                  | Formaldehyde 0.0001 0.0000                                                                   | Benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Toluene 0.0000 0.0000                                                         | Xylene 0.0000 0.0000 0.0000                                    | Ethylbenzene               | Hexane 0.0000                                    | CO <sub>2</sub>                                                                                                                              | CH <sub>4</sub> 0.0006 0.0001 0.0006                                                | N <sub>2</sub> C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Iotes: Construction emissions are based on ell pad construction.  Source Type VelI Pad Construction General Activity Vehicle Road Dust Equipment Exhaust Vehicle Exhaust Subtotal Vehicle Road Dust                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CO<br><br><br>0.0524<br>0.0139<br>0.0663                         | NO <sub>x</sub> 0.1713 0.0051 0.1765 0.0072                                    | SO <sub>2</sub> 0.0169 0.0000 0.0169                                                                | PM <sub>10</sub> 0.1841 2.2468 0.0169 2.4478 0.0027 0.0000                                                                              | PM <sub>2.5</sub> 0.0276 0.2247 0.006 0.2529                                                                                                     | VOCs                                                                                                                                  | Formaldehyde 0.0001 0.0001 0.0001                                                            | Benzene 0.0001 0.0000 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Toluene 0.0000 0.0000 0.0000                                                  | Xylene                                                         | Ethylbenzene               | Hexane 0.0000                                    | CO <sub>2</sub> 11.7530 1.3527 13.1057                                                                                                       | CH <sub>4</sub> 0.0006 0.0001 0.0006                                                | N <sub>2</sub> C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Lotes: Construction emissions are based on ell pad construction.  Source Type  Source Type  Veil Pad Construction General Activity Vehicle Road Dust Equipment Exhaust Vehicle Exhaust  Vehicle Exhaust Vehicle Exhaust Vehicle Exhaust Vehicle Exhaust Vehicle Exhaust Vehicle Exhaust Vehicle Exhaust Vehicle Exhaust Vehicle Exhaust Vehicle Exhaust Vehicle Exhaust Vehicle Exhaust Vehicle Exhaust Vehicle Exhaust Vehicle Fixen Service  | CO<br><br><br>0.0524<br>0.0139<br>0.0663<br><br>0.0236<br>3.6731 | NO <sub>x</sub> 0.1713 0.0051 0.1765 0.0072 5.3684                             | SO <sub>2</sub> 0.0169 0.0000 0.0169 0.0000 0.0394                                                  | PM <sub>10</sub> 0.1841 2.2468 0.0169 2.4478 0.0027 0.0000 0.2119                                                                       | PM <sub>2.5</sub> 0.0276 0.2247 0.0006 0.2529 0.0003 0.0000 0.2119                                                                               | VOCs                                                                                                                                  | Formaldehyde                                                                                 | Benzene 0.0001 0.0000 0.0000 0.0042                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Toluene 0.0000 0.0000 0.0000 0.0000                                           | Xylene 0.0000 0.0000 0.0000 0.0013                             | Ethylbenzene               | Hexane 0.0000                                    | CO <sub>2</sub>                                                                                                                              | CH <sub>4</sub> 0.0006 0.0001 0.0006 0.0002 0.0355                                  | N <sub>2</sub> (0<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Iotes: Construction emissions are based on rell pad construction.  Source Type Vell Pad Construction General Activity Vehicle Road Dust Equipment Exhaust Vehicle Exhaust Subtotal Veli Construction Vehicle Road Dust Vehicle Exhaust Subtotal Veli Construction Vehicle Exhaust Drilling Fagines - Tier 2 Drilling Engines - Tier 42 (2011)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CO<br>                                                           | NO <sub>x</sub> 0.1713 0.0051 0.1765 0.0072 5.3684 3.6731                      | SO <sub>2</sub> 0.0169 0.0000 0.0169 0.0000 0.0394                                                  | PM <sub>10</sub> 0.1841 2.2468 0.0169 2.4478 0.0027 0.0000 0.2119 0.1060                                                                | PM <sub>2.5</sub> 0.0276 0.2247 0.0006 0.2529 0.0003 0.0000 0.2119 0.1060                                                                        | VOCs                                                                                                                                  | Formaldehyde                                                                                 | Benzene 0.0001 0.0000 0.0000 0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Toluene 0.0000 0.0000 0.0000 0.0018                                           | Xylene                                                         | Ethylbenzene               | Hexane 0.0000                                    | 11.7530<br>1.3527<br>13.1057<br>1.8434<br>736.9200<br>736.9200                                                                               | CH <sub>4</sub> 0.0006 0.0001 0.0006 0.0002 0.0355 0.0355                           | N <sub>2</sub> C<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| iotes: Construction emissions are based on ell pad construction.  Source Type Vell Pad Construction General Activity Vehicle Road Dust Equipment Exhaust Vehicle Exhaust Vell Construction Vehicle Road Dust Vehicle Exhaust Vehicle Fixed Dust Vehicle Fixed Dust Vehicle Fixed Dust Vehicle Fixed Dust Vehicle Fixed Fix | CO<br>                                                           | NO <sub>x</sub> 0.1713 0.0051 0.1765 0.0072 5.3684 3.6731                      | SO <sub>2</sub> 0.0169 0.0000 0.0169 0.0000 0.0394 0.0394 0.0394                                    | PM <sub>10</sub> 0.1841 2.2468 0.0169 2.4478 0.0027 0.0000 0.2119 0.1060 0.0311                                                         | PM <sub>2.5</sub> 0.0276 0.2247 0.0006 0.2529 0.0003 0.0000 0.2119 0.1060 0.0311                                                                 | VOCs                                                                                                                                  | Formaldehyde                                                                                 | ### (tons/well)  Benzene 0.0001 0.0000 0.0001 0.0000 0.0042 0.0042 0.0042                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Toluene 0.0000 0.0000 0.0000 0.0018 0.0018                                    | Xylene 0.0000 0.0000 0.0000 0.0013 0.0013                      | Ethylbenzene               | Hexane 0.0000                                    | CO <sub>2</sub> 11.7530 1.3527 13.1057 1.8434 736.9200 736.9200 736.9200 736.9200                                                            | CH <sub>4</sub> 0.0006 0.0001 0.0006 0.0002 0.0355 0.0355                           | N <sub>2</sub> (0<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Iotes: Construction emissions are based on ell pad construction.  Source Type  Vell Pad Construction General Activity Vehicle Road Dust Equipment Exhaust Vehicle Exhaust Vehicle Exhaust Vehicle Road Dust Subtotal  Vell Construction Vehicle Exhaust Drilling Engines - Tier 4a (2011) Drilling Engines - Tier 4b (2015) Subtotal (with Tier 2 critiling)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CO<br>                                                           | NO <sub>x</sub> 0.1713 0.0051 0.1765 0.0072 5.3684 3.6731                      | SO <sub>2</sub> 0.0169 0.0000 0.0169 0.0000 0.0394                                                  | PM <sub>10</sub> 0.1841 2.2468 0.0169 2.4478 0.0027 0.0000 0.2119 0.1060                                                                | PM <sub>2.5</sub> 0.0276 0.2247 0.0006 0.2529 0.0003 0.0000 0.2119 0.1060                                                                        | VOCs                                                                                                                                  | Formaldehyde                                                                                 | Benzene 0.0001 0.0000 0.0000 0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Toluene 0.0000 0.0000 0.0000 0.0018                                           | Xylene                                                         | Ethylbenzene               | Hexane 0.0000                                    | 11.7530<br>1.3527<br>13.1057<br>1.8434<br>736.9200<br>736.9200                                                                               | CH <sub>4</sub> 0.0006 0.0001 0.0006 0.0002 0.0355 0.0355                           | N <sub>2</sub> (0<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Construction emissions are based on ell pad construction.  Source Type  Vell Pad Construction General Activity Vehicle Road Dust Equipment Exhaust Vehicle Exh |                                                                  | NO <sub>x</sub> 0.1713 0.0051 0.1765 0.0072 5.3684 3.6731 3.6731 5.3756        |                                                                                                     | PM <sub>10</sub> 0.1841 2.2468 0.0169 2.4478 0.0027 0.0000 0.2119 0.1060 0.0311 0.2146                                                  | PM <sub>2.5</sub> 0.0276 0.02247 0.0006 0.2529 0.0003 0.0000 0.2119 0.1060 0.0311 0.2122                                                         | VOCs                                                                                                                                  | Formaldehyde                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Toluene                                                                       | Xylene 0.0000 0.0000 0.0000 0.0001 0.0013 0.0013 0.0013        | Ethylbenzene 0.0000 0.0000 | Hexane 0.0000 0.0000                             | CO <sub>2</sub> 1.7530 1.3527 13.1057 1.8434 736.9200 736.9200 736.9200 738.7634                                                             | CH <sub>4</sub> 0.0006 0.0001 0.0001 0.0002 0.0355 0.0355 0.0357                    | N <sub>2</sub> c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Iotes: Construction emissions are based on ell pad construction.  Source Type  Vell Pad Construction General Activity Vehicle Road Dust Equipment Exhaust Vehicle Exhaust Vehicle Exhaust Vehicle Road Dust Subtotal  Vell Construction Vehicle Exhaust Drilling Engines - Tier 4a (2011) Drilling Engines - Tier 4b (2015) Subtotal (with Tier 2 critiling)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CO<br>                                                           | NO <sub>x</sub> 0.1713 0.0051 0.1765 0.0072 5.3684 3.6731                      | SO <sub>2</sub> 0.0169 0.0000 0.0169 0.0000 0.0394 0.0394 0.0394                                    | PM <sub>10</sub> 0.1841 2.2468 0.0169 2.4478 0.0027 0.0000 0.2119 0.1060 0.0311                                                         | PM <sub>2.5</sub> 0.0276 0.2247 0.0006 0.2529 0.0003 0.0000 0.2119 0.1060 0.0311                                                                 | VOCs                                                                                                                                  | Formaldehyde                                                                                 | ### (tons/well)  Benzene 0.0001 0.0000 0.0001 0.0000 0.0042 0.0042 0.0042                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Toluene 0.0000 0.0000 0.0000 0.0018 0.0018                                    | Xylene 0.0000 0.0000 0.0000 0.0013 0.0013                      | Ethylbenzene               | Hexane 0.0000                                    | CO <sub>2</sub> 11.7530 1.3527 13.1057 1.8434 736.9200 736.9200 736.9200 736.9200                                                            | CH <sub>4</sub> 0.0006 0.0001 0.0006 0.0002 0.0355 0.0355                           | N <sub>2</sub> c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Construction emissions are based on ell pad construction.  Source Type  Vell Pad Construction General Activity Vehicle Road Dust Equipment Exhaust Vehicle Exh |                                                                  | NO <sub>x</sub> 0.1713 0.0051 0.1765 0.0072 5.3684 3.6731 3.6731 5.3756        |                                                                                                     | PM <sub>10</sub> 0.1841 2.2468 0.0169 2.4478 0.0027 0.0000 0.2119 0.1060 0.0311 0.2146                                                  | PM <sub>2.5</sub> 0.0276 0.02247 0.0006 0.2529 0.0003 0.0000 0.2119 0.1060 0.0311 0.2122                                                         | VOCs                                                                                                                                  | Formaldehyde                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Toluene                                                                       | Xylene 0.0000 0.0000 0.0000 0.0001 0.0013 0.0013 0.0013        | Ethylbenzene 0.0000 0.0000 | Hexane 0.0000 0.0000                             | CO <sub>2</sub> 1.7530 1.3527 13.1057 1.8434 736.9200 736.9200 736.9200 738.7634                                                             | CH <sub>4</sub> 0.0006 0.0001 0.0001 0.0002 0.0355 0.0355 0.0357                    | N <sub>2</sub> c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Iotes: Construction emissions are based on elli pad construction.  Source Type  Vell Pad Construction General Activity Vehicle Road Dust Equipment Exhaust Vehicle Exhaust Vehicle Exhaust  Vell Construction Vehicle Road Dust Vehicle Exhaust Drilling Engines - Tier 42 Drilling Engines - Tier 40 (2015) Subtotal (with Tier 2 critting) Completion and Testing Flaring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                  | NO <sub>x</sub> 0.1713 0.0051 0.1765 0.0072 5.3684 3.6731 3.6731 5.3756 0.0200 |                                                                                                     | PM <sub>10</sub> 0.1841 2.2468 0.0169 2.4478 0.0027 0.0000 0.2119 0.1060 0.0311 0.2146                                                  | PM <sub>2.5</sub> 0.0276 0.2247 0.0006 0.0006 0.0006 0.0000 0.2119 0.1060 0.0311 0.2122                                                          | VOCs                                                                                                                                  | Formaldehyde                                                                                 | Benzene 0.0001 0.0000 0.0001 0.0000 0.0042 0.0042 0.0042 0.0042                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Toluene 0.0000 0.0000 0.0000 0.00018 0.0018 0.0018                            | Xylene                                                         | Ethylbenzene               | Hexane 0.0000 0.0000                             | 11.7530<br>1.3527<br>13.1057<br>1.3627<br>13.1057<br>1.8434<br>736.9200<br>736.9200<br>736.9200<br>736.9200<br>736.9200                      | CH <sub>4</sub> 0.0006 0.0001 0.0006 0.0002 0.0355 0.0355 0.0357                    | N <sub>2</sub> c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Lotes: Construction emissions are based on reell pad construction.  Source Type Veil Pad Construction General Activity Vehicle Road Dust Equipment Exhaust Vehicle Texhaust Vehicle Exhaust Vehicle Texhaust  |                                                                  | NO <sub>5</sub> 0.1713 0.0051 0.1765 0.0072 5.3684 3.6731 3.6731 5.3756 0.0200 | SO <sub>2</sub> 0.0169 0.0000 0.0169 0.0000 0.0394 0.0394 0.0394                                    | PM <sub>10</sub> 0.1841 2.2468 0.0169 2.4478 0.0027 0.0000 0.2119 0.1060 0.0311 0.2146                                                  | PM <sub>2.5</sub> 0.0276 0.02247 0.0006 0.2529 0.0003 0.0000 0.2119 0.1060 0.0311 0.2122                                                         | vocs  0.0142 0.0038 0.0181 1.4127 0.4238 0.1978 1.4179                                                                                | Formaldehyde                                                                                 | (tons/well)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Toluene 0.0000 0.0000 0.0000 0.0001 0.0018 0.0018                             | Xylene                                                         | Ethylbenzene 0.0000 0.0000 |                                                  | 11.7530<br>1.3527<br>13.1057<br>1.3627<br>13.1057<br>1.8434<br>736.9200<br>736.9200<br>736.9200<br>736.9200<br>736.9200                      | CH <sub>4</sub> 0.0006 0.0001 0.0006 0.0002 0.0355 0.0355 0.0357                    | N <sub>2</sub> C<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Iotes: Construction emissions are based on reili pad construction.  Source Type Vell Pad Construction General Activity Vehicle Road Dust Equipment Exhaust Vehicle Exhaust                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                  | NO <sub>x</sub> 0.1713 0.0051 0.1765 0.0072 5.3684 3.6731 3.6731 0.0200        |                                                                                                     | PM <sub>10</sub> 0.1841 2.2468 0.0169 2.4478 0.0027 0.0000 0.2119 0.1060 0.03717 0.2146                                                 | PM <sub>2.5</sub> 0.0276 0.2276 0.2276 0.0006 0.2529 0.0003 0.0000 0.2112 0.1060 0.0311 0.2122 0.0015                                            | VOCs                                                                                                                                  | Formaldehyde                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                               | Xylene 0.0000 0.0000 0.0000 0.0000 0.0013 0.0013 0.0013        | Ethylbenzene 0.0000 0.0000 |                                                  | CO2 11.7530 1.3527 13.1057                                                                                                                   | CH <sub>4</sub> 0.0006 0.0001 0.0006 0.0002 0.0355 0.0355 0.0357                    | N <sub>2</sub> C<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| lotes: Construction emissions are based on ell pad construction.  Source Type  Vell Pad Construction General Activity Vehicle Road Dust Equipment Exhaust Vehicle Exhaust Vehicle Exhaust Vehicle Road Dust Vehicle Road Dust Vehicle Road Dust Uell Construction Vehicle Exhaust Drilling Engines - Tier 4a (2011) Drilling Engines - Tier 4b (2015) Subtotal (with Tier 2 crilling) Completion and Testing Flaing Waste Pond Evaporation Vehicle Road Dust                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                  | NO <sub>x</sub>                                                                | SO <sub>2</sub>                                                                                     | PM <sub>10</sub> 0.1841 2.2468 0.0169 2.4478 0.0007 0.0000 0.2119 0.7060 0.0311 0.015 7.0221 0.1220                                     | PM <sub>2.5</sub> 0.0276 0.2247 0.0006 0.2529 0.0003 0.0000 0.2119 0.1080 0.0311 0.2122 0.0015 0.7022 0.1220                                     | VOCs                                                                                                                                  | Formaldehyde                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                               | Xylene 0.0000 0.0000 0.0000 0.0000 0.0013 0.0013 0.0000        | Ethylbenzene               |                                                  | 11.7530<br>1.3527<br>13.1057<br>1.3627<br>13.1057<br>1.8434<br>736.9200<br>736.9200<br>736.9200<br>736.9200<br>3.3685<br>63.7560             | CH <sub>4</sub> 0.0006 0.0001 0.0002 0.0355 0.0355 0.0357                           | N <sub>2</sub> c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Iotes: Construction emissions are based on ell pad construction.  Source Type Vell Pad Construction General Activity Vehicle Road Dust Equipment Exhaust Vehicle Exhaust Frac Pump Engines Subtotal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                  | NO <sub>x</sub>                                                                | SO <sub>2</sub> 0.0169 0.0000 0.0169 0.0000 0.0394 0.0394 0.0394 0.0394 0.0301 0.0000 0.1137        | PM <sub>10</sub> 0.1841 2.2468 0.0169 2.4478 0.0027 0.0000 0.2119 0.1060 0.0311 0.2146 0.0015 7.0221 0.12217 7.0221                     | PM <sub>2.5</sub> 0.02747 0.02247 0.0006 0.2529 0.0003 0.0000 0.2119 0.1060 0.0311 0.2122 0.0015 0.7022 0.1220 0.8257                            | VOCs                                                                                                                                  | Formaldehyde                                                                                 | - (tons/well)  Benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                               | Xylene                                                         | Ethylbenzene 0.0000 0.0000 | Hexane 0.0000 0.0000 0.0009 0.0009               | CO <sub>2</sub>                                                                                                                              | CH <sub>4</sub> 0.0006 0.0001 0.0006 0.00355 0.0355 0.0357 0.0005 0.0002 0.0142     | N <sub>2</sub> (c<br>0.00<br>0.00<br>0.00<br>0.00<br>0.02<br>0.02<br>0.02<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| otes: Construction emissions are based on ell pad construction.  Source Type  Fell Pad Construction General Activity Vehicle Road Dust Equipment Exhaust Vehicle Tengines - Tier 4a (2011) Subtotal (with Tier 2 drilling) ompletion and Testing Flaning Waste Pond Exporation Vehicle Road Dust Vehicle Exhaust Frac Pump Engines Subtotal CONSTRUCTION TOTAL'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                  | NO <sub>x</sub>                                                                | SO <sub>2</sub>                                                                                     | PM <sub>10</sub> 0.1841 2.2468 0.0169 2.4478 0.0007 0.0000 0.2119 0.7060 0.0311 0.015 7.0221 0.1220                                     | PM <sub>2.5</sub> 0.0276 0.2247 0.0006 0.2529 0.0003 0.0000 0.2119 0.1080 0.0311 0.2122 0.0015 0.7022 0.1220                                     |                                                                                                                                       | Formaldehyde                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Toluene 0.0000 0.0000 0.0000 0.0001 0.0018 0.0018 0.0018 0.0000 0.0000 0.0000 | Xylene 0.0000 0.0000 0.0000 0.0013 0.0013 0.0013 0.0000 0.0001 | Ethylbenzene               |                                                  | 11.7530<br>1.3527<br>13.1057<br>1.3627<br>13.1057<br>1.8434<br>736.9200<br>736.9200<br>736.9200<br>736.9200<br>3.3685<br>63.7560             | CH <sub>4</sub> 0.0006 0.0001 0.0002 0.0355 0.0355 0.0357                           | N <sub>2</sub> (c<br>0.00<br>0.00<br>0.00<br>0.00<br>0.02<br>0.02<br>0.02<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| otes: Construction emissions are based on eell pad construction.  Source Type  /ell Pad Construction General Activity Vehicle Road Dust Equipment Exhaust Vehicle Exhaust Frac Pump Engines Subtotal CONSTRUCTION TOTAL  Velil Production                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                  | NO <sub>x</sub>                                                                | SO <sub>2</sub> 0.0169 0.0000 0.0169 0.0000 0.0394 0.0394 0.0394 0.0001 0.0000 0.1138 0.1701        | PM <sub>10</sub> 0.1841 2.2488 0.0169 2.4478 0.0007 0.0007 0.1060 0.0311 0.2146 0.0015 7.021 0.1220 7.1456 9.8080                       | PM <sub>2.5</sub> 0.0276 0.0276 0.02247 0.0006 0.2529 0.0003 0.0000 0.2119 0.1080 0.0311 0.2122 0.0015 0.1220 0.8257 1.2908                      | VOCs                                                                                                                                  | Formaldehyde                                                                                 | - (tons/well)  Benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                               | Xylene                                                         | Ethylbenzene 0.0000 0.0000 | Hexane 0.0000 0.0000 0.0009 0.0009               | CO <sub>2</sub>                                                                                                                              | CH <sub>4</sub> 0.0006 0.0001 0.0006 0.0355 0.0355 0.0357 0.0005 0.0000 0.0000      | N <sub>2</sub> (0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0 |
| Iotes: Construction emissions are based on ell pad construction.  Source Type Vell Pad Construction General Activity Vehicle Road Dust Vehicle Road Dust Vehicle Exhaust Vehicle Fad Ust Vehicle Fad Ust Vehicle Fad Ust Vehicle Road Dust Vehicle Road Dust Vehicle Exhaust Frac Pump Engines  Subtotal CONSTRUCTION TOTAL Velil Production Velater Production V |                                                                  | NO <sub>x</sub>                                                                | SO <sub>2</sub> 0.0169 0.0000 0.0169 0.0000 0.0394 0.0394 0.0394 0.0394 0.0301 0.0000 0.1137        | PM <sub>10</sub> 0.1841 2.2468 0.0169 2.4478 0.0027 0.0000 0.2119 0.1060 0.0311 0.2146 7.0221 0.1220 7.1456                             | PM <sub>2.5</sub> 0.02747 0.02247 0.0006 0.2529 0.0003 0.0000 0.2119 0.1060 0.0311 0.2122 0.0015 0.7022 0.1220 0.8257                            | VOCs  VOCs  0.0142 0.0038 0.0181  0.0051 1.4127 0.4238 0.1978 1.4179 0.0011 0.3500 0.0095 0.1394 0.5000 1.9359 0.0118                 | Formaldehyde                                                                                 | Benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                               | Xylene                                                         | Ethylbenzene 0.0000 0.0000 | Hexane                                           | CO <sub>2</sub>                                                                                                                              | CH4                                                                                 | N <sub>2</sub> (0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0 |
| Iotes: Construction emissions are based on reill pad construction.  Source Type Vell Pad Construction General Activity Vehicle Road Dust Equipment Exhaust Vehicle Exhaust Subtotal (with Tier 2 drilling) Completion and Testing Flaring Vehicle Exhaust Frac Pump Engines Subtotal CONSTRUCTION TOTAL' Velil Production Heater/Treater Condensate Tanks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                  | NO <sub>x</sub>                                                                | SO <sub>2</sub> 0.0169 0.0000 0.0394 0.0394 0.0394 0.0394 0.0394 0.0395 0.0394 0.0394 0.0394        | PM <sub>10</sub> 0.1841 2.2488 0.0169 2.4478 0.0027 0.0000 0.2119 0.1060 0.0311 0.0161 7.0221 7.1456 9.8080                             | PM <sub>2.5</sub> 0.0276 0.0276 0.2247 0.0006 0.2529 0.0003 0.0000 0.2119 0.1080 0.0311 0.2122 0.0015 0.1220 0.8257 1.2908                       | VOCs                                                                                                                                  | Formaldehyde 0.0001 0.0001 0.0001 0.0003 0.0053 0.0053 0.0054 0.0000 0.00005 0.00005 0.00005 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                               | Xylene                                                         | Ethylbenzene               | Hexane 0.0000 0.0000 0.0009 0.0009               | CO <sub>2</sub>                                                                                                                              | CH4 0.0006 0.0001 0.0006 0.0355 0.0355 0.0355 0.0357 0.0005 0.00000 0.00000 0.00000 | N <sub>2</sub> C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| iotes: Construction emissions are based on ell pad construction.  Source Type Vell Pad Construction General Activity Vehicle Road Dust Equipment Exhaust Vehicle Exhaust Subtotal (with Tier 2 drilling) Flaring Waste Pond Exporation Vehicle Road Dust Vehicle Exhaust Frac Pump Engines  Subtotal CONSTRUCTION TOTAL Velil Production Heater/Treater Condensate Tanks Gas Generator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                  | NO <sub>x</sub>                                                                |                                                                                                     | PM <sub>10</sub> 0.1841 2.2468 0.0169 2.4478 0.0000 0.2119 0.1060 0.0311 0.015 0.1220 7.1456 9.8080 0.0163                              | PM <sub>2.5</sub> 0.0276 0.2247 0.0006 0.2529 0.0000 0.0000 0.1060 0.0311 0.7022 0.1220 0.8257 1.2908 0.0163 0.0000                              | VOCs  VOCs  0.0142 0.0038 0.0181                                                                                                      | Formaldehyde                                                                                 | Benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Toluene                                                                       | Xylene                                                         | Ethylbenzene 0.0000 0.0000 | Hexane                                           | CO2 11.7530 1.3527 13.1057 13.1057 1.84 1.84 1.84 1.84 1.8520 1.86 1.86 1.86 1.86 1.86 1.86 1.86 1.86                                        | CH4                                                                                 | N <sub>2</sub> C<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Iotes: Construction emissions are based on reil pad construction.  Source Type Vell Pad Construction General Activity Vehicle Road Dust Equipment Exhaust Vehicle Exhaust Subtotal (with Tier 2 drilling) Completion and Testing Flating Vehicle Exhaust Frac Pump Engines Subtotal CONSTRUCTION TOTAL' Vell Production Heater/Treater Condensate Tanks Gas Generator Wind Blown Dust                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                  | NO <sub>x</sub>                                                                | SO <sub>2</sub> 0.0169 0.0000 0.0394 0.0394 0.0394 0.0395 0.0301 0.0001 0.0000 0.1137 0.1138 0.1701 | PM <sub>10</sub> 0.1841 2.2488 0.0169 2.4478 0.00027 0.0000 0.2119 0.1060 0.0311 0.2146 0.0015 7.0221 0.1220 7.1456 9.8080 0.0163       | PM <sub>2.5</sub> 0.0276 0.0274 0.0006 0.2529 0.0003 0.0000 0.2119 0.1020 0.0311 0.0122 0.015 0.7022 0.1220 0.8257 1.2908                        | VOCs                                                                                                                                  | Formaldehyde                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                               | Xylene                                                         | Ethylbenzene 0.0000 0.0000 | Hexane 0.0000 0.0000 0.0009 0.0009 0.2498 0.0002 | CO <sub>2</sub>                                                                                                                              | CH4 0.0006 0.0001 0.0006 0.0355 0.0355 0.0355 0.0357 0.0005 0.00000 0.00000 0.00000 | N <sub>2</sub> C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Iotes: Construction emissions are based on ell pad construction.  Source Type Veil Pad Construction General Activity Vehicle Road Dust Equipment Exhaust Vehicle Exhaust Subtotal (with Tier 2 drilling) Flaring Vehicle Road Dust Vehicle Road Dust Vehicle Road Dust Vehicle Road Dust Vehicle Exhaust Frace Pump Engines Subtotal CONSTRUCTION TOTAL: Veil Production Heater/Treater Condensate Tanks Gas Generator Wind Blown Dust Vehicle Road Dust Vehicle Road Dust Vehicle Road Dust                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                  | NO <sub>x</sub>                                                                |                                                                                                     | PM <sub>10</sub> 0.1841 2.2468 0.0169 2.4478 0.0000 0.2119 0.1060 0.0311 0.015 0.1220 7.1456 9.8080 0.0163                              | PM <sub>2.5</sub> 0.0276 0.2247 0.0006 0.2529 0.0000 0.0000 0.1060 0.0311 0.7022 0.1220 0.8257 1.2908 0.0163 0.0000                              | VOCs  VOCs  0.0142 0.0038 0.0181  0.0051 1.4127 0.4238 0.1978 1.4179 0.0011 0.3500 0.0095 0.1394 0.5000 1.9359 0.0118                 | Formaldehyde                                                                                 | Cons/well   Cons | Toluene                                                                       | Xylene                                                         | Ethylbenzene               | Hexane                                           | 11.7530<br>1.3527<br>13.1057<br>1.8434<br>736.9200<br>736.9200<br>736.9200<br>736.9200<br>738.7634<br>24.0000<br>                            | CH4                                                                                 | N <sub>2</sub> (0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0 |
| Iotes: Construction emissions are based on reil pad construction.  Source Type Vell Pad Construction General Activity Vehicle Road Dust Equipment Exhaust Vehicle Exhaust Torrilling Engines - Tire + da (2011) Subtotal (with Tier 2 drilling) Completion and Testing Flating Vehicle Exhaust Frac Pump Engines  CONSTRUCTION TOTAL' Vell Production Heater/Treater Vehicle Exhaust Gas Generator Vehicle Road Dust                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                  | NO <sub>x</sub>                                                                |                                                                                                     | PM <sub>10</sub> 0.1841 2.2488 0.0169 2.4478 0.0027 0.0000 0.2119 0.1060 0.0311 0.0161 7.0221 7.1458 9.8080 0.0163 0.0000 0.8247 5.4255 | PM <sub>2.5</sub> 0.0276 0.0274 0.0006 0.2529 0.0003 0.0000 0.2119 0.1020 0.0015 0.7022 0.8257 1.2908 0.0163 0.0000 0.4948 0.5425                | VOCs                                                                                                                                  | Formaldehyde                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                               | Xylene                                                         | Ethylbenzene 0.0000 0.0000 | Hexane 0.0000 0.0009 0.0009 0.2498 0.0002        | CO <sub>2</sub> 11.7530 1.3527 13.1057                                                                                                       | CH4                                                                                 | N <sub>2</sub> (0<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Iotes: Construction emissions are based on ell pad construction.  Source Type Veil Pad Construction General Activity Vehicle Road Dust Equipment Exhaust Vehicle Exhaust Subtotal (with Tier 2 drilling) Flaring Venicle Fond Evaporation Vehicle Road Dust Vehicle Exhaust Frac Pump Engines  Subtotal CONSTRUCTION TOTAL: Veil Production Heater/Treater Condensate Tanks Gas Generator Wind Blown Dust Vehicle Road Dust Vehicle Road Dust Vehicle Exhaust Frac Pump Engines  Subtotal Vehicle Exhaust Subtotal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                  | NO <sub>x</sub>                                                                |                                                                                                     | PM <sub>16</sub> 0.1841 2.2468 0.0169 0.0000 0.2119 0.0000 0.2119 0.0015 0.1220 7.1456 9.8080 0.0163 0.0000 0.8247 5.4255 6.2665        | PM <sub>2.5</sub> 0.0276 0.2247 0.0006 0.2529 0.0003 0.0000 0.2119 0.0015 0.7022 0.1220 0.0163 0.0000 0.4149 0.0000 0.4141 0.0000 0.4141 0.10537 | VOCs  VOCs  0.0142 0.0038 0.0181  0.0051 1.4127 0.4238 0.1979 0.0011 0.3500 0.0095 0.1394 0.5000 1.9359 0.0118 15.9300 0.0111 15.9310 | Formaldehyde                                                                                 | Cons/well                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Toluene                                                                       | Xylene                                                         | Ethylbenzene               | Hexane                                           | CO2 11.7530 1.3527 13.1057 13.1057 1.8434 736.9200 736.9200 738.7634 24.0000 3.3695 63.7560 27.3695 27.3695 27.3695 27.3695 27.3695 303.0161 | CH4                                                                                 | N <sub>2</sub> 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Iotes: Construction emissions are based on reili pad construction.  Source Type Vell Pad Construction General Activity Vehicle Road Dust Equipment Exhaust Vehicle Exhaust Tilling Engines - Tiler 4a (2011) Drilling Engines - Tiler 4a (2011) Subtotal (with Tiler 2 drilling) Flaring Vehicle Exhaust Frac Pump Engines Subtotal Construction Heater/Treater Condensate Tanks Gas Generator Wind Blown Dust Vehicle Road Dust Vehicle Road Dust Vehicle Road Dust Vehicle Exhaust Subtotal PRODUCTION TOTAL.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                  | NO <sub>x</sub>                                                                |                                                                                                     | PM <sub>10</sub> 0.1841 2.2488 0.0169 2.4478 0.0027 0.0000 0.2119 0.1060 0.0311 0.0161 7.0221 7.1458 9.8080 0.0163 0.0000 0.8247 5.4255 | PM <sub>2.5</sub> 0.0276 0.0274 0.0006 0.2529 0.0003 0.0000 0.2119 0.1020 0.0015 0.7022 0.8257 1.2908 0.0163 0.0000 0.4948 0.5425                | VOCs                                                                                                                                  | Formaldehyde                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                               | Xylene                                                         | Ethylbenzene 0.0000 0.0000 | Hexane 0.0000 0.0009 0.0009 0.2498 0.0002        | CO <sub>2</sub> 11.7530 1.3527 13.1057                                                                                                       | CH4                                                                                 | N <sub>2</sub> (2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| otes: Construction emissions are based on ell pad construction.  Source Type  Fell Pad Construction General Activity Vehicle Road Dust Equipment Exhaust Vehicle Exhaust Torilling Engines - Tier 4a (2011) Subtotal (with Tier 2 drilling) Ompletion and Testing Flaring Vehicle Road Dust Vehicle Road Dust Vehicle Exhaust Frace Pump Engines Subtotal  CONSTRUCTION TOTAL  Fell Production Heater/Treater Condensate Tanks Gas Generator Wind Blown Dust Vehicle Exhaust Vehicle Exhaust Vehicle Exhaust Subtotal PRODUCTION TOTAL  Vehicle Exhaust Subtotal PRODUCTION TOTAL  CONSTRUCTION AND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                  | NO <sub>x</sub>                                                                |                                                                                                     | PM <sub>16</sub> 0.1841 2.2468 0.0169 0.0000 0.2119 0.0000 0.2119 0.2146 0.0015 0.1220 7.1456 9.8080 0.0163 0.0000 0.8247 5.4255 6.2665 | PM <sub>2.5</sub> 0.0276 0.2247 0.0006 0.2529 0.0000 0.0000 0.0110 0.00311 0.0015 0.7022 0.1220 0.0163 0.0000 0.4148 0.0000 0.4948 0.5425 1.0537 | VOCs                                                                                                                                  | Formaldehyde                                                                                 | Cons/well   Cons | Toluene                                                                       | Xylene                                                         | Ethylbenzene               | Hexane                                           | 11.7530<br>1.3527<br>13.1057<br>1.8434<br>736.9200<br>736.9200<br>736.9200<br>738.7634<br>24.0000<br>                                        | CH4                                                                                 | N <sub>2</sub> C 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| otes: Construction emissions are based on eell pad construction.  Source Type  /ell Pad Construction General Activity Vehicle Road Dust Equipment Exhaust Vehicle Exhaust Orilling Engines - Tier 4a (2011) Fulling Engines - Tier 4a (2011) Subtotal (with Tier 2 drilling) Ompletion and Testing Flaring Vehicle Exhaust Frac Pump Engines Subtotal CONSTRUCTION TOTAL'  /ell Production Heater/Treater Condensate Tanks Gas Generator Wind Blown Dust Vehicle Exhaust Vehicle Road Dust Vehicle Road Dust Vehicle Road Dust Vehicle Exhaust Subtotal PRODUCTION TOTAL.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                  | NO <sub>x</sub>                                                                |                                                                                                     | PM <sub>16</sub> 0.1841 2.2468 0.0169 0.0000 0.2119 0.0000 0.2119 0.0015 0.1220 7.1456 9.8080 0.0163 0.0000 0.8247 5.4255 6.2665        | PM <sub>2.5</sub> 0.0276 0.2247 0.0006 0.2529 0.0003 0.0000 0.2119 0.0015 0.7022 0.1220 0.0163 0.0000 0.4149 0.0000 0.4141 0.0000 0.4141 0.10537 | VOCs  VOCs  0.0142 0.0038 0.0181  0.0051 1.4127 0.4238 0.1979 0.0011 0.3500 0.0095 0.1394 0.5000 1.9359 0.0118 15.9300 0.0111 15.9510 | Formaldehyde                                                                                 | Cons/well                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Toluene                                                                       | Xylene                                                         | Ethylbenzene               | Hexane                                           | CO2 11.7530 1.3527 13.1057 13.1057 1.8434 736.9200 736.9200 738.7634 24.0000 3.3695 63.7560 27.3695 27.3695 27.3695 27.3695 27.3695 303.0161 | CH4                                                                                 | N <sub>2</sub> 00<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| otes: Construction emissions are based on ell pad construction.  Source Type  Fell Pad Construction General Activity Vehicle Road Dust Equipment Exhaust Vehicle Exhaust Torilling Engines - Tier 4a (2011) Subtotal (with Tier 2 drilling) Ompletion and Testing Flaring Vehicle Road Dust Vehicle Road Dust Vehicle Exhaust Frace Pump Engines Subtotal  CONSTRUCTION TOTAL  Fell Production Heater/Treater Condensate Tanks Gas Generator Wind Blown Dust Vehicle Exhaust Vehicle Exhaust Vehicle Exhaust Subtotal PRODUCTION TOTAL  Vehicle Exhaust Subtotal PRODUCTION TOTAL  CONSTRUCTION AND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                  | NO <sub>x</sub>                                                                |                                                                                                     | PM <sub>16</sub> 0.1841 2.2468 0.0169 0.0000 0.2119 0.0000 0.2119 0.2146 0.0015 0.1220 7.1456 9.8080 0.0163 0.0000 0.8247 5.4255 6.2665 | PM <sub>2.5</sub> 0.0276 0.2247 0.0006 0.2529 0.0000 0.0000 0.0110 0.00311 0.0015 0.0015 0.1020 0.1220 0.0163 0.0000 0.4948 0.5425 1.0537        | VOCs                                                                                                                                  | Formaldehyde                                                                                 | Cons/well   Cons | Toluene                                                                       | Xylene                                                         | Ethylbenzene               | Hexane                                           | 11.7530<br>1.3527<br>13.1057<br>1.8434<br>736.9200<br>736.9200<br>736.9200<br>738.7634<br>24.0000<br>                                        | CH4                                                                                 | N <sub>2</sub> (0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |


| Verlicke Franzer  Verlicke Fra |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                                                            |                                                                                                                            |                                                                                                                                                       |                                                                                                                                  | NS SUMMA                                                                                                                                                                             |                                                                             |                                                                                                   |                                                   |                                                                       |                                   |                                                                        |                                                                                                                                                                                                                   |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|---------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Self Paul Controllection  Wholes Road Dots                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                                                            |                                                                                                                            |                                                                                                                                                       | Е                                                                                                                                | missions by                                                                                                                                                                          | Source Categor                                                              | y (lbs/well)                                                                                      |                                                   |                                                                       |                                   |                                                                        |                                                                                                                                                                                                                   |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Selection   Sele   | Source Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CO           | NO <sub>v</sub>                                                                                            | SO <sub>2</sub>                                                                                                            | PM <sub>10</sub>                                                                                                                                      | PM2 6                                                                                                                            | VOCs                                                                                                                                                                                 | Formaldehyde                                                                | Benzene                                                                                           | Toluene                                           | Xvlene                                                                | Ethylbenzene                      | Hexane                                                                 | CO <sub>2</sub>                                                                                                                                                                                                   | CH <sub>4</sub>                                                                                                   | N <sub>2</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Verbeich Rohard Lord Verbeich  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                                                            |                                                                                                                            | 1 11110                                                                                                                                               | 1 1112.5                                                                                                                         |                                                                                                                                                                                      |                                                                             |                                                                                                   |                                                   | ,                                                                     |                                   |                                                                        |                                                                                                                                                                                                                   |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Verbier Roberholes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                                                            |                                                                                                                            | 368.22                                                                                                                                                | 55.23                                                                                                                            |                                                                                                                                                                                      |                                                                             |                                                                                                   |                                                   |                                                                       |                                   |                                                                        |                                                                                                                                                                                                                   |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Verbeite Prinance   1,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                                                            |                                                                                                                            | 4,493.57                                                                                                                                              | 449.36                                                                                                                           |                                                                                                                                                                                      |                                                                             |                                                                                                   |                                                   |                                                                       |                                   |                                                                        |                                                                                                                                                                                                                   |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Part   Control Bulber   19,241   392.55   33.77   4.89.55   69.78   84.13   6.19   6.15   6.06   6.05   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6   | Equipment Exhaust                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 104.85       | 342.65                                                                                                     | 33.76                                                                                                                      | 33.76                                                                                                                                                 | 1.19                                                                                                                             | 28.49                                                                                                                                                                                | 0.17                                                                        | 0.13                                                                                              | 0.06                                              | 0.04                                                                  |                                   |                                                                        | 23,506                                                                                                                                                                                                            | 1.13                                                                                                              | 0.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| February    | Vehicle Exhaust                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 27.76        | 10.30                                                                                                      | 0.01                                                                                                                       |                                                                                                                                                       |                                                                                                                                  | 7.64                                                                                                                                                                                 | 0.02                                                                        | 0.02                                                                                              | 0.0065                                            | 0.0045                                                                |                                   |                                                                        | 2,705                                                                                                                                                                                                             | 0.12                                                                                                              | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Velocie Robot Desi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 132.61       | 352.95                                                                                                     | 33.77                                                                                                                      | 4,895.55                                                                                                                                              | 505.78                                                                                                                           | 36.13                                                                                                                                                                                | 0.19                                                                        | 0.15                                                                                              | 0.06                                              | 0.05                                                                  | 0.00                              | 0.00                                                                   | 26,211.35                                                                                                                                                                                                         | 1.26                                                                                                              | 0.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Verbies Defaules   67.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                                                            |                                                                                                                            |                                                                                                                                                       |                                                                                                                                  |                                                                                                                                                                                      |                                                                             |                                                                                                   |                                                   |                                                                       |                                   |                                                                        |                                                                                                                                                                                                                   |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Deling Engines - Time 2 Deling Engines - Time 4 defilling 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                                                            |                                                                                                                            |                                                                                                                                                       |                                                                                                                                  |                                                                                                                                                                                      |                                                                             |                                                                                                   |                                                   |                                                                       |                                   |                                                                        |                                                                                                                                                                                                                   |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Daling Engines - Tier 4s (2011) 7,346.19 7,364.19 7,862 21.91 21.91 21.91 47.54 10.90 8.37 3.67 2.56 - 1.147.040 77.00 43.7 20.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                                                            |                                                                                                                            |                                                                                                                                                       |                                                                                                                                  |                                                                                                                                                                                      |                                                                             |                                                                                                   |                                                   |                                                                       | -                                 | -                                                                      |                                                                                                                                                                                                                   |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Deling Exprogres - The 48 (2019)   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-2012   7-20 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                                                            |                                                                                                                            |                                                                                                                                                       |                                                                                                                                  |                                                                                                                                                                                      |                                                                             |                                                                                                   |                                                   |                                                                       |                                   |                                                                        |                                                                                                                                                                                                                   |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Substack (with Turk 4s defining) 7-39.4.1 7,966.00 78.9.2 217.37 212.51 87.79 10.72 8.46 3.49 2.57 0.00 0.00 1.00 1.477.56(72.77.4.3 4.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                                                            |                                                                                                                            |                                                                                                                                                       |                                                                                                                                  |                                                                                                                                                                                      |                                                                             | 8.37                                                                                              |                                                   | 2.56                                                                  | -                                 |                                                                        |                                                                                                                                                                                                                   |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| semplestion and Tealing Wasse Pool Exposition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | 7,070.70                                                                                                   | 70.02                                                                                                                      |                                                                                                                                                       |                                                                                                                                  |                                                                                                                                                                                      |                                                                             | 8.37                                                                                              |                                                   | 2.56                                                                  | 0.00                              | 0.00                                                                   |                                                                                                                                                                                                                   |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Fibring Planet Frederick   33.00   40.00   0   3.04   3.04   2.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Subtotal (with Her 4a drilling)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7,393.41     | 7,360.60                                                                                                   | 78.82                                                                                                                      | 217.37                                                                                                                                                | 212.51                                                                                                                           | 857.90                                                                                                                                                                               | 10.73                                                                       | 8.46                                                                                              | 3.69                                              | 2.57                                                                  | 0.00                              | 0.00                                                                   | 1,477,526.72                                                                                                                                                                                                      | 71.43                                                                                                             | 44.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Wass Perofice Regoration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 33.60        | 40.00                                                                                                      | 0                                                                                                                          | 3.04                                                                                                                                                  | 3.04                                                                                                                             | 2 20                                                                                                                                                                                 |                                                                             | 0.00                                                                                              | 0.00                                              |                                                                       |                                   | 1 91                                                                   | 48 000                                                                                                                                                                                                            | 0.02                                                                                                              | 0.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Verbicke Fishans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                                                            |                                                                                                                            | 3.04                                                                                                                                                  | 3.04                                                                                                                             |                                                                                                                                                                                      |                                                                             |                                                                                                   |                                                   |                                                                       |                                   |                                                                        |                                                                                                                                                                                                                   |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Verleice Enhanced Fig. 20 Verleice Enhanced  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                                                            |                                                                                                                            | 14.044.29                                                                                                                                             | 1.404.43                                                                                                                         |                                                                                                                                                                                      |                                                                             |                                                                                                   |                                                   |                                                                       |                                   |                                                                        |                                                                                                                                                                                                                   |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Fige Purp Engines                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 71.20        | 25.72                                                                                                      | 0.04                                                                                                                       |                                                                                                                                                       |                                                                                                                                  | 19.00                                                                                                                                                                                | 0.07                                                                        | 0.06                                                                                              | 0.02                                              | 0.01                                                                  | -                                 |                                                                        | 6.737                                                                                                                                                                                                             | 0.34                                                                                                              | 0.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Substate   Sels-de   360-309   277.58   14,291.77   19,116.15   3,296.90   1,999.90   0,07   0,06   0,02   0,01   0,00   1,81   15,954.74.90   1,26   1,15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                                                            |                                                                                                                            | 243.94                                                                                                                                                | 243.94                                                                                                                           |                                                                                                                                                                                      |                                                                             |                                                                                                   |                                                   |                                                                       |                                   |                                                                        |                                                                                                                                                                                                                   |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| CONSTRUCTION TOTAL.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                                                            |                                                                                                                            |                                                                                                                                                       |                                                                                                                                  |                                                                                                                                                                                      | 0.07                                                                        | 0.06                                                                                              | 0.02                                              |                                                                       | 0.00                              | 1.81                                                                   |                                                                                                                                                                                                                   |                                                                                                                   | 1.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Vertical Production   160   17   429.41   2.5765   32.6353   22.6353   22.6376   0.32   0.01   0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                                                            |                                                                                                                            |                                                                                                                                                       |                                                                                                                                  |                                                                                                                                                                                      |                                                                             |                                                                                                   |                                                   |                                                                       |                                   |                                                                        |                                                                                                                                                                                                                   |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Condensate Tanks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                                                            |                                                                                                                            | T.,                                                                                                                                                   | 1                                                                                                                                |                                                                                                                                                                                      |                                                                             |                                                                                                   |                                                   |                                                                       |                                   |                                                                        |                                                                                                                                                                                                                   |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Construction emissions are based on a per well constructed/delied basis.  Construction emissions are based on a per well constructed/delied basis.  Construction emissions are based on a per well constructed/delied basis.  Construction emissions are based on a per well constructed/delied basis.  Construction emissions are based on a per well constructed/delied basis.  Construction emissions are based on a per well constructed/delied basis.  Construction emissions are based on a per well constructed/delied basis.  Construction emissions are based on a per well constructed/delied basis.  Construction emissions are based on a per well constructed/delied basis.  Construction emissions are based on a per well constructed/delied basis.  Construction emissions are based on a per well constructed/delied basis.  Construction emissions are based on a per well constructed/delied basis.  Construction emissions are based on a per well constructed/delied basis.  Construction emissions are based on a per well constructed/delied basis.  Construction emissions are based on a per well constructed/delied basis.  Construction emissions are based on a per well constructed/delied basis.  Construction emissions are based on a per well constructed/delied basis.  Construction emissions are based on a per well constructed/delied basis.  Construction emissions are based on a per well constructed/delied basis.  Construction emissions are based on a per well constructed/delied basis.  Construction emissions are based on a per well constructed/delied basis.  Construction emissions are based on a per well constructed/delied basis.  Construction emissions are based on a per well constructed/delied basis.  Construction emissions experience by constructed and associated wells are drilled. All drilling is assumed to be completed in the year real part of the year real part o | Heater/Treater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 360.71       | 429.41                                                                                                     | 2.5765                                                                                                                     | 32.6353                                                                                                                                               | 32.6353                                                                                                                          | 23.6176                                                                                                                                                                              | 0.32                                                                        | 0.01                                                                                              | 0.01                                              |                                                                       |                                   |                                                                        | 515,294                                                                                                                                                                                                           | 9.88                                                                                                              | 9.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Gas Generator Wind Blown Dust                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                                                            |                                                                                                                            |                                                                                                                                                       |                                                                                                                                  |                                                                                                                                                                                      |                                                                             |                                                                                                   |                                                   |                                                                       |                                   | 499.50                                                                 | -                                                                                                                                                                                                                 |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Wind Blown Dust                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 236.87       | 3,048.69                                                                                                   | 0.44                                                                                                                       |                                                                                                                                                       |                                                                                                                                  |                                                                                                                                                                                      | 41.25                                                                       | 0.33                                                                                              | 0.30                                              | 0.14                                                                  | 0.03                              |                                                                        | 82,195                                                                                                                                                                                                            |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Vehicle Exhaust   70.86   28.00   0.03       20.14   0.22   0.17   0.05   0.03         6.543   0.90   0.65   0.05   0.05   0.03         0.03   498.53   506.032.24   10.78   10.15   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                                                            |                                                                                                                            |                                                                                                                                                       |                                                                                                                                  |                                                                                                                                                                                      |                                                                             |                                                                                                   |                                                   |                                                                       |                                   |                                                                        |                                                                                                                                                                                                                   |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Surce Type   Co   No   So   PM   PM   PM   PM   Source Category (trons/well)   Source Type   Co   No   So   PM   PM   PM   PM   PM   PM   PM   P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                                                            |                                                                                                                            | 10,850.98                                                                                                                                             | 1,085.10                                                                                                                         |                                                                                                                                                                                      |                                                                             |                                                                                                   |                                                   |                                                                       |                                   |                                                                        |                                                                                                                                                                                                                   |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| PRODUCTION TOTAL  CONSTRUCTION AND  PRODUCTION TOTAL  9,039,02 14,722,85 343,22 31,937,17 4,477,07 33,797,75 52.78 100,98 4.15 2,81 0.03 501,64 2,164,597,24 84,77 95 56.0 total production emissions are based on a per well constructed/defilled basis. Construction emissions are based on a per well constructed defilled basis. Construction emissions are based on a per well constructed basis. Construction emissions are based on a per well constructed defilled basis. Construction emissions by Source Category (tons/well).    Emissions by Source Category (tons/well)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                                                            |                                                                                                                            |                                                                                                                                                       |                                                                                                                                  |                                                                                                                                                                                      |                                                                             |                                                                                                   |                                                   |                                                                       |                                   |                                                                        |                                                                                                                                                                                                                   |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| CONSTRUCTION AND PRODUCTION TOTAL PRODUCTION TOTAL 9,939.92 14,722.65 343.22 31,937.17 4,477.07 33,797.75 52.78 100.98 4.15 2.81 0.03 501.64 2,164,507.24 84.73 58.0 58.0 58.0 59.0 59.0 59.0 59.0 59.0 59.0 59.0 59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                                                            |                                                                                                                            |                                                                                                                                                       |                                                                                                                                  |                                                                                                                                                                                      |                                                                             |                                                                                                   |                                                   |                                                                       |                                   |                                                                        |                                                                                                                                                                                                                   |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| PRODUCTION TOTAL   0,039.92   14,722.65   343.22   31,937.17   4,477.07   33,797.75   52.78   100.98   4.15   2.81   0.03   501.64   2,164,507.24   84.73   56.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PRODUCTION TOTAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 668.43       | 3,506.10                                                                                                   | 3.05                                                                                                                       | 12,532.99                                                                                                                                             | 2,107.38                                                                                                                         | 31,903.76                                                                                                                                                                            | 41.78                                                                       | 92.31                                                                                             | 0.37                                              | 0.17                                                                  | 0.03                              | 499.83                                                                 | 606,032.24                                                                                                                                                                                                        | 10.78                                                                                                             | 10.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Construction emissions are based on a per well constructed/drilled basis.   Construction emissions occur only in the year that a well pad is constructed and associated wells are drilled. All drilling is assumed to be completed in the year that a well pad is constructed and associated wells are drilled. All drilling is assumed to be completed in the year that a well pad is constructed and associated wells are drilled. All drilling is assumed to be completed in the year that a well pad is constructed and associated wells are drilled. All drilling is assumed to be completed in the year that a well pad is constructed and associated wells are drilled. All drilling is assumed to be completed in the year that a well pad is constructed and associated wells are drilled. All drilling is assumed to be completed in the year that a well pad is constructed and associated wells are drilled. All drilling is assumed to be completed in the year that a well pad is constructed and associated wells are drilled. All drilling is assumed to be completed in the year that a well pad is constructed and associated wells are drilled. All drilling is assumed to be completed in the year that a well pad is constructed and associated wells are drilled. All drilling is assumed to be completed in the year that a well pad is constructed and associated wells are drilled. All drilling is assumed to be completed in the year that a well pad is constructed.    Filter   Principle   Pri   | CONSTRUCTION AND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                                                                                                            |                                                                                                                            |                                                                                                                                                       |                                                                                                                                  |                                                                                                                                                                                      |                                                                             |                                                                                                   |                                                   |                                                                       |                                   |                                                                        |                                                                                                                                                                                                                   |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Construction emissions are based on a per well constructed/drilled basis.   Construction emissions occur only in the year that a well pad is constructed and associated wells are drilled. All drilling is assumed to be completed in the year that a well pad is constructed and associated wells are drilled. All drilling is assumed to be completed in the year that a well pad is constructed and associated wells are drilled. All drilling is assumed to be completed in the year that a well pad is constructed and associated wells are drilled. All drilling is assumed to be completed in the year that a well pad is constructed and associated wells are drilled. All drilling is assumed to be completed in the year that a well pad is constructed and associated wells are drilled. All drilling is assumed to be completed in the year that a well pad is constructed and associated wells are drilled. All drilling is assumed to be completed in the year that a well pad is constructed and associated wells are drilled. All drilling is assumed to be completed in the year that a well pad is constructed and associated wells are drilled. All drilling is assumed to be completed in the year that a well pad is constructed and associated wells are drilled. All drilling is assumed to be completed in the year that a well pad is constructed and associated wells are drilled. All drilling is assumed to be completed in the year that a well pad is constructed.    Filter   Principle   Pri   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9.039.92     | 14.722.65                                                                                                  | 343.22                                                                                                                     | 31.937.17                                                                                                                                             | 4.477.07                                                                                                                         | 33.797.75                                                                                                                                                                            | 52.78                                                                       | 100.98                                                                                            | 4.15                                              | 2.81                                                                  | 0.03                              | 501.64                                                                 | 2.164.507.24                                                                                                                                                                                                      | 84.73                                                                                                             | 56.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Feb   Pad Construction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | otes:<br>Construction emissions are based on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              | onstructed/dr                                                                                              | illed basis.                                                                                                               | Construction                                                                                                                                          |                                                                                                                                  |                                                                                                                                                                                      |                                                                             |                                                                                                   | structed and                                      | associated w                                                          | rells are drilled. A              | All drilling is a                                                      | assumed to be co                                                                                                                                                                                                  | ompleted in t                                                                                                     | he year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| General Activity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | otes:<br>Construction emissions are based on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              | constructed/dri                                                                                            | illed basis.                                                                                                               | Construction                                                                                                                                          |                                                                                                                                  |                                                                                                                                                                                      |                                                                             |                                                                                                   | structed and                                      | associated w                                                          | rells are drilled. A              | All drilling is a                                                      | assumed to be co                                                                                                                                                                                                  | ompleted in t                                                                                                     | he year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Vehicle Road Dust                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | iotes:<br>Construction emissions are based on<br>ell pad construction.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | a per well o |                                                                                                            |                                                                                                                            |                                                                                                                                                       | Er                                                                                                                               | nissions by S                                                                                                                                                                        | Source Category                                                             | (tons/well)                                                                                       |                                                   |                                                                       |                                   |                                                                        |                                                                                                                                                                                                                   |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Equipment Exhaust 0.0524 0.1713 0.0169 0.0069 0.0060 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000 | lotes:<br>Construction emissions are based on<br>rell pad construction.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | a per well o |                                                                                                            |                                                                                                                            | PM <sub>10</sub>                                                                                                                                      | Er<br>PM <sub>2.5</sub>                                                                                                          | nissions by S                                                                                                                                                                        | Source Category                                                             | (tons/well)                                                                                       |                                                   |                                                                       |                                   |                                                                        |                                                                                                                                                                                                                   |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Vehicle Exhaust   0.0139   0.0051   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0   | lotes: Construction emissions are based on ell pad construction.  Source Type Veil Pad Construction General Activity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | a per well o | NO <sub>x</sub>                                                                                            | SO <sub>2</sub>                                                                                                            | PM <sub>10</sub>                                                                                                                                      | PM <sub>2.5</sub>                                                                                                                | nissions by S                                                                                                                                                                        | Source Category                                                             | (tons/well)<br>Benzene                                                                            | Toluene                                           | Xylene                                                                | Ethylbenzene                      | Hexane                                                                 | CO <sub>2</sub>                                                                                                                                                                                                   | CH <sub>4</sub>                                                                                                   | N₂O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Subtoal   0.0663   0.1765   0.0169   2.478   0.2529   0.181   0.0001   0.0001   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.   | lotes: Construction emissions are based on rell pad construction.  Source Type Veil Pad Construction General Activity Vehicle Road Dust                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CO           | NO <sub>x</sub>                                                                                            | SO <sub>2</sub>                                                                                                            | PM <sub>10</sub> 0.1841 2.2468                                                                                                                        | PM <sub>2.5</sub> 0.0276 0.2247                                                                                                  | VOCs                                                                                                                                                                                 | Source Category Formaldehyde                                                | (tons/well) Benzene                                                                               | Toluene                                           | Xylene                                                                | Ethylbenzene                      | Hexane                                                                 | CO <sub>2</sub>                                                                                                                                                                                                   | CH₄<br>                                                                                                           | N₂O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Velicle Exhaust                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | lotes: Construction emissions are based on reell pad construction.  Source Type  Veil Pad Construction General Activity Vehicle Road Dust Equipment Exhaust                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CO           | NO <sub>x</sub>                                                                                            | SO₂<br><br><br>0.0169                                                                                                      | PM <sub>10</sub> 0.1841 2.2468                                                                                                                        | PM <sub>2.5</sub> 0.0276 0.2247                                                                                                  | VOCs 0.0142                                                                                                                                                                          | Formaldehyde 0.0001                                                         | Benzene 0.0001                                                                                    | <br><br>0.0000                                    | <br><br>0.0000                                                        | Ethylbenzene<br>                  | Hexane                                                                 | CO <sub>2</sub>                                                                                                                                                                                                   | CH <sub>4</sub>                                                                                                   | N <sub>2</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Vehicle Road Dust                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | lotes: Construction emissions are based on well pad construction.  Source Type Vell Pad Construction General Activity Vehicle Road Dust Equipment Exhaust Vehicle Exhaust                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CO           | NO <sub>x</sub> 0.1713 0.0051                                                                              | SO <sub>2</sub> 0.0169 0.0000                                                                                              | PM <sub>10</sub> 0.1841 2.2468 0.0169                                                                                                                 | PM <sub>2.5</sub> 0.0276 0.2247 0.0006                                                                                           | VOCs                                                                                                                                                                                 | Formaldehyde 0.0001 0.0000                                                  | (tons/well)<br>  Benzene<br>                                                                      | Toluene 0.0000 0.0000                             | Xylene 0.0000 0.0000                                                  | Ethylbenzene                      | Hexane                                                                 | CO <sub>2</sub> 11.7530 1.3527                                                                                                                                                                                    | CH <sub>4</sub> 0.0006 0.0001                                                                                     | N <sub>2</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Vehicle Exhaust                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | lotes: Construction emissions are based on elil pad construction.  Source Type  Vell Pad Construction General Activity Vehicle Road Dust Equipment Exhaust Vehicle Exhaust Subtotal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CO           | NO <sub>x</sub> 0.1713 0.0051                                                                              | SO <sub>2</sub> 0.0169 0.0000                                                                                              | PM <sub>10</sub> 0.1841 2.2468 0.0169                                                                                                                 | PM <sub>2.5</sub> 0.0276 0.2247 0.0006                                                                                           | VOCs                                                                                                                                                                                 | Formaldehyde 0.0001 0.0000                                                  | (tons/well)<br>  Benzene<br>                                                                      | Toluene 0.0000 0.0000                             | Xylene 0.0000 0.0000                                                  | Ethylbenzene                      | Hexane                                                                 | CO <sub>2</sub> 11.7530 1.3527                                                                                                                                                                                    | CH <sub>4</sub> 0.0006 0.0001                                                                                     | N <sub>2</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Drilling Engines - Tier 2 Drilling Engines - Tier 2 Drilling Engines - Tier 2 Drilling Engines - Tier 4 (2011) Drilling Engines - Tier 4 (2011) Drilling Engines - Tier 4 (2011) Drilling Engines - Tier 4 (2015) Drilling Engines - Tier 4 (2016) Drilling Engines - Ti | lotes: Construction emissions are based on early pad construction.  Source Type Veil Pad Construction General Activity Vehicle Road Dust Equipment Exhaust Vehicle Exhaust Subtotal Veil Construction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CO           | NO <sub>x</sub> 0.1713 0.0051                                                                              | SO <sub>2</sub> 0.0169 0.0000                                                                                              | PM <sub>10</sub> 0.1841 2.2468 0.0169 2.4478                                                                                                          | PM <sub>2.5</sub> 0.0276 0.2247 0.0006 0.2529                                                                                    | VOCs                                                                                                                                                                                 | Formaldehyde 0.0001 0.0000                                                  | (tons/well)<br>  Benzene<br>                                                                      | Toluene 0.0000 0.0000                             | Xylene 0.0000 0.0000                                                  | Ethylbenzene                      | Hexane                                                                 | CO <sub>2</sub> 11.7530 1.3527                                                                                                                                                                                    | CH <sub>4</sub> 0.0006 0.0001                                                                                     | N <sub>2</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Drilling Engines - Tier 4a (2011) 3.6731 3.6731 0.0394 0.1060 0.1060 0.4238 0.0053 0.0042 0.0018 0.0013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | lotes: Construction emissions are based on elil pad construction.  Source Type Vell Pad Construction General Activity Vehicle Road Dust Equipment Exhaust Vehicle Exhaust Subtotal Velli Construction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CO           | NO <sub>x</sub>                                                                                            | SO <sub>2</sub> 0.0169 0.0000 0.0169                                                                                       | PM <sub>10</sub> 0.1841 2.2468 0.0169 2.4478                                                                                                          | PM <sub>2.5</sub> 0.0276 0.2247 0.0006 0.2529                                                                                    | VOCs                                                                                                                                                                                 | Formaldehyde 0.0001 0.0000                                                  | Benzene                                                                                           | Toluene                                           | Xylene                                                                |                                   | Hexane 0.0000                                                          | CO <sub>2</sub> 11.7530 1.3527 13.1057                                                                                                                                                                            | CH <sub>4</sub> 0.0006 0.0001 0.0006                                                                              | N <sub>2</sub> C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Drilling Engines - Tier 4b (2015) Subtotal (with Tier 4a principle) Subtotal (viet) Frace Pump Engines Subtotal (viet) Subtota | lotes: Construction emissions are based on earlier pad construction.  Source Type  Veill Pad Construction General Activity Vehicle Road Dust Equipment Exhaust Vehicle Exhaust Subtotal  Veli Construction Vehicle Road Dust Vehicle Road Dust Vehicle Road Dust                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CO           | NO <sub>x</sub> 0.1713 0.0051 0.1765                                                                       | SO <sub>2</sub> 0.0169 0.0000 0.0169                                                                                       | PM <sub>10</sub> 0.1841 2.2468 0.0169 2.4478                                                                                                          | PM <sub>2.5</sub> 0.0276 0.2247 0.0006 0.2529                                                                                    | VOCs                                                                                                                                                                                 | Formaldehyde                                                                | (tons/well)                                                                                       | Toluene 0.0000 0.0000 0.0000                      | Xylene 0.0000 0.0000 0.0000                                           |                                   | Hexane                                                                 | CO <sub>2</sub> 11.7530 1.3527 13.1057                                                                                                                                                                            | CH <sub>4</sub> 0.0006 0.0001 0.0006                                                                              | N <sub>2</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Subtotal (with Tief 4a drilling)   3.6967   3.6803   0.0394   0.1087   0.1063   0.4289   0.0054   0.0042   0.0018   0.0013   0.0000   0.0000   0.0000   0.0000   0.0057   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.0257   0.   | Lotes: Construction emissions are based on well pad construction.  Source Type Vell Pad Construction General Activity Vehicle Road Dust Equipment Exhaust Vehicle Exhaust Subtotal Vehicle Road Dust Vehicle Exhaust                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CO           | NO <sub>x</sub> 0.1713 0.0051 0.1765 0.0072 5.3684                                                         | SO <sub>2</sub> 0.0169 0.0000 0.0169 0.0000 0.0394                                                                         | PM <sub>10</sub> 0.1841 2.2468 0.0169 2.4478 0.0027 0.0000 0.2119                                                                                     | PM <sub>2.5</sub> 0.0276 0.2247 0.0006 0.2529 0.0003 0.0000 0.2119                                                               | VOCs                                                                                                                                                                                 | Formaldehyde                                                                | Benzene 0.0001 0.0000 0.0000 0.0001                                                               | Toluene 0.0000 0.0000 0.0000 0.0000               | Xylene 0.0000 0.0000 0.0000 0.0013                                    | Ethylbenzene                      | Hexane 0.0000                                                          | CO <sub>2</sub>                                                                                                                                                                                                   | CH <sub>4</sub> 0.0006 0.0001 0.0006 0.0002 0.0355                                                                | N <sub>2</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Completion and Testing   Completion   Completion and Testing   Completion   Completi   | lotes: Construction emissions are based on elli pad construction.  Source Type  Vell Pad Construction General Activity Vehicle Road Dust Equipment Exhaust Vehicle Exhaust Vehicle Exhaust Vell Construction Vehicle Road Dust Vehicle Exhaust Juilling Engines - Tier 2 Drilling Engines - Tier 42 (2011)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CO           | NO <sub>x</sub> 0.1713 0.0051 0.1765 0.0072 5.3684                                                         | SO <sub>2</sub> 0.0169 0.0000 0.0169 0.0000 0.0394                                                                         | PM <sub>10</sub> 0.1841 2.2468 0.0169 2.4478 0.0027 0.0000 0.2119 0.1060                                                                              | PM <sub>2.5</sub> 0.0276 0.2247 0.0006 0.2529 0.0003 0.0000 0.2119 0.1060                                                        | vocs                                                                                                                                                                                 | Formaldehyde                                                                | (tons/well)<br>  Benzene<br>                                                                      | Toluene 0.0000 0.0000 0.0000 0.0018 0.0018        | Xylene 0.0000 0.0000 0.0000 0.0000 0.0013                             | Ethylbenzene                      | Hexane 0.0000                                                          | CO <sub>2</sub>                                                                                                                                                                                                   | CH <sub>4</sub> 0.0006 0.0001 0.0006 0.0002 0.0355                                                                | N <sub>2</sub> C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Flaring 0.0168 0.0200 0.0001 0.0015 0.0011 0.0000 0.0000 0.0009 24.0000 0.0005 0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Lotes: Construction emissions are based on well pad construction.  Source Type  Veil Pad Construction General Activity Vehicle Road Dust Equipment Exhaust Vehicle Tend Dust Vehicle Exhaust Vehicle Exhaust Vehicle Exhaust Vehicle Exhaust Vehicle Exhaust Vehicle Fire 4 Dust Vehicle Exhaust Vehicle Exhaust Vehicle Exhaust Vehicle Fire 4 Dust Vehicle Exhaust                                                           | CO           | NO <sub>x</sub> 0.1713 0.0051 0.1765 0.0072 5.3684 3.6731 3.6731                                           | SO <sub>2</sub> 0.0169 0.0000 0.0169 0.0000 0.0394 0.0394 0.0394                                                           | PM <sub>10</sub> 0.1841 2.2468 0.0169 2.4478 0.0027 0.0027 0.1060 0.2119 0.1060                                                                       | PM <sub>2.5</sub> 0.0276 0.2247 0.0006 0.2529 0.0003 0.0000 0.2119 0.1060 0.0311                                                 | VOCs                                                                                                                                                                                 | Formaldehyde                                                                | Benzene 0.0001 0.0000 0.0001 0.0000 0.0042 0.0042                                                 | Toluene 0.0000 0.0000 0.0000 0.0000 0.0018 0.0018 | Xylene 0.0000 0.0000 0.0000 0.0000 0.0013 0.0013                      |                                   | Hexane 0.0000                                                          | CO <sub>2</sub> 11.7530 1.3527 13.1057 1.8434 736.9200 736.9200 736.9200                                                                                                                                          | CH <sub>4</sub> 0.0006 0.0001 0.0006 0.0002 0.0355 0.0355                                                         | N <sub>2</sub> C<br><br>0.000<br>0.000<br>0.000<br><br>0.000<br>0.02:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Waste Pond Exporation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | lotes: Construction emissions are based on ell pad construction.  Source Type  Vell Pad Construction General Activity Vehicle Road Dust Equipment Exhaust Vehicle Exhaust  Vell Construction Vehicle Exhaust Subtotal Vell Construction Vehicle Exhaust 5  Vell Construction Vehicle Exhaust 6  Vell Construction Vehicle Exhaust 7  Velli Construction 7  Vehicle Exhaust 7  Velli Construction 8  Velli Construction 9  Velli Constructi | CO           | NO <sub>x</sub> 0.1713 0.0051 0.1765 0.0072 5.3684 3.6731 3.6731                                           | SO <sub>2</sub> 0.0169 0.0000 0.0169 0.0000 0.0394 0.0394 0.0394                                                           | PM <sub>10</sub> 0.1841 2.2468 0.0169 2.4478 0.0027 0.0027 0.1060 0.2119 0.1060                                                                       | PM <sub>2.5</sub> 0.0276 0.2247 0.0006 0.2529 0.0003 0.0000 0.2119 0.1060 0.0311                                                 | VOCs                                                                                                                                                                                 | Formaldehyde                                                                | Benzene 0.0001 0.0000 0.0001 0.0000 0.0042 0.0042                                                 | Toluene 0.0000 0.0000 0.0000 0.0000 0.0018 0.0018 | Xylene 0.0000 0.0000 0.0000 0.0000 0.0013 0.0013                      |                                   | Hexane 0.0000                                                          | CO <sub>2</sub> 11.7530 1.3527 13.1057 1.8434 736.9200 736.9200 736.9200                                                                                                                                          | CH <sub>4</sub> 0.0006 0.0001 0.0006 0.0002 0.0355 0.0355                                                         | N <sub>2</sub> C<br><br>0.000<br>0.000<br>0.000<br><br>0.000<br>0.02:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Vehicle Road Dust                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | lotes: Construction emissions are based on reill pad construction.  Source Type Vell Pad Construction General Activity Vehicle Road Dust Equipment Exhaust Vehicle Fixed Times - Time 4a (2011) Drilling Engines - Time 4a (2015) Subtotal (with Time 4 ad rilling) Subtotal (with Time 4 ad rilling)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CO           | NO <sub>x</sub> 0.1713 0.0051 0.1765 0.0072 5.3684 3.6731 3.6803                                           | SO <sub>2</sub> 0.0169 0.0000 0.0394 0.0394 0.0394 0.0394                                                                  | PM <sub>10</sub> 0.1841 2.2468 0.0169 2.4478 0.0027 0.0000 0.2119 0.1060 0.0311 0.1087                                                                | PM <sub>2.5</sub> 0.0276 0.2247 0.0006 0.2529  0.0003 0.0000 0.2119 0.1060 0.0311 0.1063                                         | VOCs                                                                                                                                                                                 | Formaldehyde                                                                | (tons/well)<br>  Benzene<br>                                                                      | Toluene                                           | Xylene                                                                | Ethylbenzene                      | Hexane 0.0000 0.0000                                                   | CO <sub>2</sub> 1.7530 1.3527 13.10571.8434 736.9200 736.9200 738.7634                                                                                                                                            | CH <sub>4</sub> 0.0006 0.0001 0.0006 0.0002 0.0355 0.0355 0.0355                                                  | N <sub>2</sub> C<br>0.000<br>0.000<br>0.000<br>0.000<br>0.02<br>0.02<br>0.02<br>0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Vehicle Exhaust 0.0356 0.0129 0.0000 0.0005 0.0000 0.0000 0.0000 3.3885 0.0002 0.0002 0.0001 63.7560 0.0142 63.7560 0.0142 63.7560 0.0142 63.7560 0.0142 63.7560 0.0142 63.7560 0.0142 63.7560 0.0142 63.7560 0.0142 63.7560 0.0142 63.7560 0.0142 63.7560 0.0142 63.7560 0.0142 63.7560 0.0142 63.7560 0.0142 63.7560 0.0142 63.7560 0.0142 63.7560 0.0142 63.7560 0.0142 63.7560 0.0142 63.7560 0.0142 63.7560 0.0142 63.7560 0.0142 63.7560 0.0142 63.7560 0.0142 63.7560 0.0142 63.7560 0.0142 63.7560 0.0142 63.7560 0.0142 63.7560 0.0142 63.7560 0.0142 63.7560 0.0142 63.7560 0.0142 63.7560 0.0142 63.7560 0.0142 63.7560 0.0142 63.7560 0.0142 63.7560 0.0142 63.7560 0.0142 63.7560 0.0142 63.7560 0.0142 63.7560 0.0142 63.7560 0.0142 63.7560 0.0142 63.7560 0.0142 63.7560 0.0142 63.7560 0.0142 63.7560 0.0142 63.7560 0.0142 63.7560 0.0142 63.7560 0.0142 63.7560 0.0142 63.7560 0.0142 63.7560 0.0142 63.7560 0.0142 63.7560 0.0142 63.7560 0.0142 63.7560 0.0142 63.7560 0.0142 63.7560 0.0142 63.7560 0.0142 63.7560 0.0142 63.7560 0.0142 63.7560 0.0142 63.7560 0.0142 63.7560 0.0142 63.7560 0.0142 63.7560 0.0142 63.7560 0.0142 63.7560 0.0142 63.7560 0.0142 63.7560 0.0142 63.7560 0.0142 63.7560 0.0142 63.7560 0.0142 63.7560 0.0142 63.7560 0.0142 63.7560 0.0142 63.7560 0.0142 63.7560 0.0142 63.7560 0.0142 63.7560 0.0142 63.7560 0.0142 63.7560 0.0142 63.7560 0.0142 63.7560 0.0142 63.7560 0.0142 63.7560 0.0142 63.7560 0.0142 63.7560 0.0142 63.7560 0.0142 63.7560 0.0142 63.7560 0.0142 63.7560 0.0142 63.7560 0.0142 63.7560 0.0142 63.7560 0.0142 63.7560 0.0142 63.7560 0.0142 63.7560 0.0142 63.7560 0.0142 63.7560 0.0142 63.7560 0.0142 63.7560 0.0142 63.7560 0.0142 63.7560 0.0142 63.7560 0.0142 63.7560 0.0142 63.7560 0.01                                                                                                                                                                                                                                                                                                                                                 | lotes: Construction emissions are based on ell pad construction.  Source Type Vell Pad Construction General Activity Vehicle Road Dust Equipment Exhaust Vehicle Exhaust Vehicle Exhaust Subtotal Vell Construction Vehicle Road Dust Vehicle Road Dust Drilling Engines - Tier 2 Drilling Engines - Tier 4a (2011) Drilling Engines - Tier 4a drilling) Subtotal (with Tier 4a drilling) Completion and Testing Flaring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CO           | NO <sub>x</sub> 0.1713 0.0051 0.1765 0.0072 5.3684 3.6731 3.6731 3.6803                                    | SO <sub>2</sub> 0.0169 0.0000 0.0394 0.0394 0.0394 0.0394                                                                  | PM <sub>10</sub> 0.1841 2.2468 0.0169 2.4478 0.0027 0.0000 0.2119 0.1060 0.0311 0.1087                                                                | PM <sub>2.5</sub> 0.0276 0.2247 0.0006 0.2529  0.0003 0.0000 0.2119 0.1060 0.0311 0.1063                                         | VOCs                                                                                                                                                                                 | Formaldehyde                                                                | Benzene 0.0001 0.0000 0.0001 0.0000 0.0042 0.0042 0.0042                                          | Toluene                                           | Xylene 0.0000 0.0000 0.0000 0.0000 0.00013 0.0013                     | Ethylbenzene                      | Hexane 0.0000 0.0000                                                   | CO <sub>2</sub> 1.7530 1.3527 13.10571.8434 736.9200 736.9200 738.7634                                                                                                                                            | CH <sub>4</sub> 0.0006 0.0001 0.0006 0.0002 0.0355 0.0355 0.0355                                                  | N <sub>2</sub> C<br>0.000<br>0.000<br>0.000<br>0.000<br>0.02<br>0.02<br>0.02<br>0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Frace Pump Engines Subtotal 0,3703 1,7186 0,1137 0,1220 0,1220 0,1394 0,0005 0,0004 0,0002 0,0001 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0, | otes: Construction emissions are based on elil pad construction.  Source Type  Vell Pad Construction General Activity Vehicle Road Dust Equipment Exhaust Vehicle Exhaust Subtotal Vehicle Exhaust Vehicle Exhaust Vehicle Exhaust Drilling Fagines - Tier 4a (2011) Drilling Fagines - Tier 4a (2011) Subtotal (with Tier 4a drilling) Ompletion and Testing Flaring Flaring Vaste Pond Evaporation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CO           | NO <sub>x</sub> 0.1713 0.0051 0.1765 0.0072 5.3684 3.6731 3.6731 3.6803                                    | SO <sub>2</sub> 0.0169 0.0000 0.0394 0.0394 0.0394 0.0394                                                                  | PM <sub>10</sub> 0.1841 2.2468 0.0169 2.4478 0.0027 0.0000 0.2119 0.1087                                                                              | PM <sub>2.5</sub> 0.0276 0.2247 0.0006 0.0006 0.0006 0.0000 0.2519 0.1060 0.0311 0.1063                                          | VOCs                                                                                                                                                                                 | Formaldehyde                                                                | Benzene 0.0001 0.0000 0.0001 0.0000 0.0042 0.0042 0.0042                                          | Toluene                                           | Xylene 0.0000 0.0000 0.0000 0.0000 0.00013 0.0013                     | Ethylbenzene                      |                                                                        | CO <sub>2</sub> 1.7530 1.3527 13.10571.8434 736.9200 736.9200 738.7634                                                                                                                                            | CH <sub>4</sub> 0.0006 0.0001 0.0006 0.0002 0.0355 0.0355 0.0355                                                  | N <sub>2</sub> C<br>0.000<br>0.000<br>0.000<br>0.000<br>0.02<br>0.02<br>0.02<br>0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Subtotal   0.4227   1.7515   0.1138   7.1456   0.8257   0.5000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000     | lotes: Construction emissions are based on rell pad construction.  Source Type  Veil Pad Construction General Activity Vehicle Road Dust Equipment Exhaust Vehicle Exhaust  Vehicle Exhaust  Vehicle Exhaust  Vehicle Exhaust  Vehicle Exhaust  Vehicle Exhaust  Vehicle Exhaust  Vehicle Exhaust  Jording Engines - Tier 2  Drilling Engines - Tier 4a (2011)  Drilling Engines - Tier 4a drilling)  Subtotal (with Tier 4a drilling) Completion and Testing Flaring  Waste Pond Exeporation  Vehicle Road Dust                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CO           | NO <sub>5</sub> 0.1713 0.0051 0.1765 0.0072 5.3684 3.6731 3.6803                                           | SO <sub>2</sub> 0.0169 0.0000 0.0169 0.0394 0.0394 0.0394 0.0394                                                           | PM <sub>10</sub> 0.1841 2.2488 0.0169 2.4478 0.0027 0.0000 0.2119 0.1080 0.0311 0.1087                                                                | PM <sub>2.5</sub> 0.0.276 0.2247 0.0006 0.2529 0.0003 0.0000 0.2719 0.1060 0.0031 0.1063                                         | vocs  0.0142 0.0142 0.0181  0.0051 1.4127 0.4238 0.1978 0.4289                                                                                                                       | Formaldehyde                                                                | (tons/well)  Benzene  0.0001 0.0000 0.0000 0.0000 0.0042 0.0042 0.0042 0.0042                     | Toluene                                           | Xylene                                                                | Ethylbenzene 0.0000 0.00000       | Hexane                                                                 | CO <sub>2</sub>                                                                                                                                                                                                   | CH <sub>4</sub> 0.0006 0.0001 0.0002 0.0355 0.0355 0.0355 0.0357                                                  | N <sub>2</sub> C 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Vell Production   Vell Produ   | lotes: Construction emissions are based on ell pad construction.  Source Type Vell Pad Construction General Activity Vehicle Road Dust Equipment Exhaust Vehicle Exhaust Jorilling Engines - Tier 4a (2011) Drilling Engines - Tier 4a drilling) Completion and Testing Flaring Waste Pond Exporation Vehicle Road Dust Vehicle Exhaust Frac Pump Engines                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | a per well c | NO <sub>x</sub> 0.1713 0.0051 0.1765 0.0072 6.36844 3.6731 3.6803                                          |                                                                                                                            | PM <sub>10</sub> 0.1841 2.2468 0.0169 2.4478 0.0000 0.2719 0.1060 0.0311 0.1067 0.1067 0.0015                                                         | PM <sub>2.6</sub> 0.0274 0.0224 0.02247 0.0006 0.2529 0.0003 0.0009 0.1060 0.0311 0.1063 0.0015 0.7022 0.1220                    | VOCs                                                                                                                                                                                 | Formaldehyde                                                                |                                                                                                   |                                                   | Xylene 0.0000 0.0000 0.0000 0.0001 0.00013 0.0000                     | Ethylbenzene 0.0000 0.00000       |                                                                        | CO <sub>2</sub>                                                                                                                                                                                                   | CH4 0.0006 0.0001 0.0001 0.0002 0.3355 0.0355 0.0355 0.0002                                                       | N <sub>2</sub> C 0.000 0.000 0.000 0.000 0.002 0.002 0.002 0.002 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Vell Production   Vell Produ   | lotes: Construction emissions are based on reliel pad construction.  Source Type Veil Pad Construction General Activity Vehicle Road Dust Equipment Exhaust Vehicle Exhaust Frac Pump Engines Subtotal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CO           | NO <sub>x</sub>                                                                                            | SO <sub>2</sub> 0.0169 0.0000 0.0169 0.0000 0.0394 0.0394 0.0394 0.0394 0.0394 0.0001 0.0000 0.1137                        | PM <sub>10</sub> 0.1841 2.2468 0.0169 2.4478 0.0027 0.0000 0.2119 0.1060 0.0311 0.1087 7.0221 0.1220 7.1456                                           | PM <sub>2.6</sub> 0.0274 0.0224 0.02247 0.0006 0.2529 0.0003 0.0009 0.1060 0.0311 0.1063 0.0015 0.7022 0.1220                    | VOCs  VOCs  0.0142 0.0038 0.0181  0.0051 1.4127 0.4238 0.1978 0.4239 0.0011 0.3500 0.00015 0.00055 0.00055 0.00055 0.00055 0.01394                                                   | Formaldehyde                                                                | (tons/well)  Benzene 0.0001 0.0000 0.0001 0.0002 0.0042 0.0042 0.0042 0.0042 0.0000 0.0000 0.0000 | Toluene                                           | Xylene 0.0000 0.0000 0.0000 0.0001 0.0013 0.0013 0.0000 0.0000 0.0000 | Ethylbenzene 0.0000 0.00000       |                                                                        | CO <sub>2</sub> 11.7530 1.3527 13.1057 - 1.8434 736.9200 736.7634 24.0000 - 3.3685 63.7560 27.3685                                                                                                                | CH <sub>4</sub> 0.0006 0.0001 0.0001 0.0002 0.0355 0.0355 0.0355 0.0005 0.0005                                    | N <sub>2</sub> C 0.000 0.000 0.000 0.000 0.002 0.002 0.002 0.002 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Condensate Tanks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | otes: Construction emissions are based on ell pad construction.  Source Type  Vell Pad Construction General Activity Vehicle Road Dust Equipment Exhaust Vehicle Trying Engines - Tier 4a (2011) Drilling Engines - Tier 4a (2011) Ompletion and Testing Flaing Waste Pond Exporation Vehicle Road Dust Vehicle Exhaust Frace Pump Engines Subtotal CONSTRUCTION TOTAL <sup>1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CO           | NO <sub>x</sub>                                                                                            | SO <sub>2</sub> 0.0169 0.0000 0.0169 0.0000 0.0394 0.0394 0.0394 0.0394 0.0394 0.0001 0.0000 0.1137                        | PM <sub>10</sub> 0.1841 2.2468 0.0169 2.4478 0.0027 0.0000 0.2119 0.1060 0.0311 0.1087 7.0221 0.1220 7.1456                                           | PM <sub>2.5</sub> 0.02747 0.0006 0.2529 0.0000 0.0003 0.0000 0.1060 0.1060 0.0165 0.7022 0.1225 0.8257                           | VOCs                                                                                                                                                                                 | Formaldehyde 0.0001 0.0000 0.0001 0.0053 0.0053 0.0054 0.0000 0.0000        |                                                                                                   |                                                   | Xylene                                                                | Ethylbenzene 0.0000 0.0000 0.0000 |                                                                        | CO <sub>2</sub> 11.7530 1.3527 13.1057 - 1.8434 736.9200 736.7634 24.0000 - 3.3685 63.7560 27.3685                                                                                                                | CH <sub>4</sub> 0.0006 0.0001 0.0006 0.0355 0.0355 0.0357 0.0005 0.00002 0.0142                                   | N <sub>2</sub> C 0.000 0.000 0.000 0.000 0.002 0.022 0.022 0.002 0.000 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Gas Generator 0.1184 1.5243 0.0002 0.0000 0.0000 0.0000 - 0.0206 0.0002 0.0001 0.0000 0.0000 0.0002 41.0975                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | otes: Construction emissions are based on ell pad construction.  Source Type  Vell Pad Construction General Activity Vehicle Road Dust Equipment Exhaust Vehicle Exhaust Frac Pump Engines Subtotal CONSTRUCTION TOTAL  Vel IP Foduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CO           | NO <sub>x</sub>                                                                                            | SO <sub>2</sub> 0.0169 0.0000 0.0169 0.0000 0.0394 0.0394 0.0394 0.0394 0.0394 0.0133 0.1133                               | PM <sub>10</sub> 0.1841 2.2468 0.0169 2.4478 0.0007 0.0000 0.2119 0.1060 0.0311 0.1087 0.0001 7.021                                                   | PM <sub>2.5</sub> 0.0274 0.02247 0.0006 0.2529 0.0003 0.0000 0.2119 0.1060 0.0311 0.1063 0.0015 0.702 0.702 0.8257               | VOCs                                                                                                                                                                                 | Formaldehyde 0.0001 0.0000 0.0001 0.0001 0.0053 0.0053 0.0054 0.0000 0.0005 |                                                                                                   |                                                   | Xylene                                                                | Ethylbenzene 0.0000 0.0000 0.0000 |                                                                        | CO <sub>2</sub> 11.7530 1.3527 13.1057 1.3627 13.4057 1.8434 736.9200 738.7634 24.0000 2.3685 63.7560 63.7560 779.2375                                                                                            | CH <sub>4</sub> 0.0006 0.0001 0.0006 0.0355 0.0355 0.0357 0.0005 0.0000 0.00142 0.0000                            | N <sub>2</sub> C 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Wind Blown Dust 0.8247 0.4948                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | otes: Construction emissions are based on ell pad construction.  Source Type  Vell Pad Construction General Activity Vehicle Road Dust Equipment Exhaust Vehicle Exhaust First Ag (2011) Subtotal (with Tier 4a drilling) Orphiling Engines - Tier 4b (2015) Subtotal (with Tier 4a drilling) Orphiling Engines - Tier 4b (2015) First Purp Perione Vehicle Road Dust Vehicle Exhaust Frace Purp Engines Subtotal CONSTRUCTION TOTAL.  Vell Production Velative Treater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CO           | NO <sub>x</sub>                                                                                            | SO <sub>2</sub> 0.0169 0.0000 0.0169 0.0000 0.0394 0.0394 0.0394 0.0394 0.0394 0.0133 0.1133                               | PM <sub>10</sub> 0.1841 2.2468 0.0169 2.4478 0.0007 0.0000 0.2119 0.1060 0.0311 0.1087 0.0001 7.021                                                   | PM <sub>2.5</sub> 0.0274 0.02247 0.0006 0.2529 0.0003 0.0000 0.2119 0.1060 0.0311 0.1063 0.0015 0.702 0.702 0.8257               | VOCs  VOCs  0.0142 0.0038 0.0181  0.0051 1.4123 0.4238 0.1978 0.0011 0.3500 0.0011 0.3500 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 | Formaldehyde 0.0001 0.0000 0.0001 0.0001 0.0053 0.0053 0.0054 0.0000 0.0005 | Cons/well   Benzene                                                                               |                                                   | Xylene                                                                | Ethylbenzene 0.0000 0.0000        |                                                                        | CO <sub>2</sub> 11.7530 1.3527 13.1057 1.3627 13.4057 1.8434 736.9200 738.7634 24.0000 2.3685 63.7560 63.7560 779.2375                                                                                            | CH <sub>4</sub> 0.0006 0.0001 0.0006 0.0355 0.0355 0.0357 0.0005 0.0000 0.00142 0.0000                            | N <sub>2</sub> C 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Vehicle Road Dust                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | otes: Construction emissions are based on elil pad construction.  Source Type  /ell Pad Construction General Activity Vehicle Road Dust Equipment Exhaust Vehicle Exhaust Frac Pump Engines Subtotal CONSTRUCTION TOTAL¹  /ell Production Heater/Treater Condensate Tanks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CO           | NO <sub>x</sub>                                                                                            | SO <sub>2</sub> 0.0169 0.0000 0.0169 0.0394 0.0394 0.0394 0.0394 0.0001 0.0000 0.1138 0.1701                               | PM <sub>19</sub> 0.1841 2.2468 0.0169 2.4478 0.0027 0.0000 0.2119 0.1080 0.0311 0.00015 7.021 7.1456 9.7021                                           | PM <sub>2.5</sub> 0.0274 0.02247 0.0006 0.2529 0.0003 0.0000 0.2119 0.1060 0.0311 0.1063 0.7022 0.1220 0.8257 1.1848             | VOCs                                                                                                                                                                                 | Formaldehyde                                                                |                                                                                                   |                                                   | Xylene                                                                | Ethylbenzene 0.0000 0.0000        | Hexane 0.0000 0.0009 0.0009 0.0009                                     | CO <sub>2</sub>                                                                                                                                                                                                   | CH4 0.0006 0.0001 0.0006 0.0355 0.0355 0.0355 0.0355 0.0357 0.0002 0.0006                                         | N <sub>2</sub> C 0.000 0.000 0.000 0.000 0.002 0.002 0.002 0.000 0.000 0.000 0.000 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Vehicle Exhaust 0.0354 0.0140 0.0000 0.0101 0.0001 0.0001 0.0000 0.0000 4.2715 0.0004 0.0001 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00           | otes: Construction emissions are based on ell pad construction.  Source Type  Vell Pad Construction General Activity Vehicle Road Dust Equipment Exhaust Vehicle Exhaust First Ag (2011) Subtotal (with Tier 4a drilling) Completion and Testing Flaring Waste Pond Evaporation Vehicle Exhaust Frace Pump Engines  Subtotal CONSTRUCTION TOTAL  Velil Production Heater/Treater Condensate Tanks Gas Generator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CO           | NO <sub>x</sub>                                                                                            | SO <sub>2</sub>                                                                                                            | PM <sub>10</sub> 0.1941 2.2468 0.0169 2.4478 0.0000 0.2119 0.1060 0.0015 0.1020 7.1456 9.7021 0.0163 0.0006                                           | PM <sub>2.5</sub> 0.0276 0.2247 0.0006 0.2529 0.0000 0.0000 0.1060 0.1060 0.0015 0.7022 0.1220 0.8257 1.1848 0.0163              | VOCs  VOCs  0.0142 0.0038 0.0181 0.0051 1.4/127 0.4238 0.1978 0.0011 0.3500 0.0011 0.3500 0.01394 0.5000 0.9470 0.0118                                                               | Formaldehyde                                                                | Cons/well                                                                                         | Toluene                                           | Xylene                                                                | Ethylbenzene                      |                                                                        | 11.7530<br>1.3527<br>13.1057<br>13.1057<br>13.1057<br>13.424<br>736.9200<br>736.9200<br>738.7634<br>24.0000<br><br>3.3685<br>63.7650<br>27.3685<br>27.3685<br>27.3685<br>27.3685<br>27.3685<br>27.3685<br>27.3685 | CH <sub>4</sub> 0.0006 0.0001 0.0006 0.0001 0.0002 0.0355 0.0355 0.0355 0.0005 0.0005 0.0006 0.0006 0.0006        | N <sub>2</sub> C 0.000 0.000 0.000 0.000 0.02 0.02 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Subtotal 0.3342 1.7531 0.0015 6.2665 1.0537 15.9519 0.0209 0.0462 0.0002 0.0001 0.0000 0.2499 303.0161 0.0054 0.005  PRODUCTION TOTAL 0.3342 1.7531 0.0015 6.2665 1.0537 15.9519 0.0209 0.0462 0.0002 0.0001 0.0000 0.2499 303.0161 0.0054 0.005  CONSTRUCTION AND PRODUCTION TOTAL 4.5200 7.3613 0.1716 15.9686 2.2385 16.8989 0.0264 0.0505 0.0021 0.0014 0.0000 0.2508 1082.2536 0.0424 0.021  Otels:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | otes: Construction emissions are based on elil pad construction.  Source Type  /ell Pad Construction General Activity Vehicle Road Dust Equipment Exhaust Vehicle Exhaust Frac Purp Engines Subtotal CONSTRUCTION TOTAL¹  /ell Production Heater/Treater Condensate Tanks Gas Generator Wind Blown Dust                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CO           | NO <sub>x</sub>                                                                                            | SO <sub>2</sub>                                                                                                            | PM <sub>19</sub> 0.1841 2.2488 0.0169 2.4478 0.0027 0.0000 0.2119 0.1080 0.0311 0.0015 7.0221 0.1220 0.1456 9.7021                                    | PM <sub>2.5</sub> 0.0276 0.02247 0.0006 0.2529 0.0003 0.0000 0.1060 0.0311 0.1063 0.0015 1.1848 0.0163 0.0163                    | VOCs  VOCs  0.0142 0.0038 0.0181 0.0051 1.4/127 0.4238 0.1978 0.0011 0.3500 0.0011 0.3500 0.01394 0.5000 0.9470 0.0118                                                               | Formaldehyde                                                                | Cons/well                                                                                         | Toluene                                           | Xylene                                                                | Ethylbenzene 0.0000 0.0000        |                                                                        | 11.7530<br>1.3527<br>13.1057<br>13.1057<br>13.1057<br>13.424<br>736.9200<br>736.9200<br>738.7634<br>24.0000<br><br>3.3685<br>63.7650<br>27.3685<br>27.3685<br>27.3685<br>27.3685<br>27.3685<br>27.3685<br>27.3685 | CH <sub>4</sub> 0.0006 0.0001 0.0006 0.0001 0.0002 0.0355 0.0355 0.0355 0.0005 0.0005 0.0006 0.0006 0.0006        | N <sub>2</sub> C 0.000 0.000 0.000 0.000 0.02 0.02 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| PRODUCTION TOTAL 0.3342 1.7531 0.0015 6.2665 1.0537 15.9519 0.0209 0.0462 0.0002 0.0001 0.0000 0.2499 303.0161 0.0054 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | lotes: Construction emissions are based on elil pad construction.  Source Type  Jell Pad Construction General Activity Vehicle Road Dust Equipment Exhaust Vehicle Exhaust Frac Pump Engines  Subtotal Vehicle Fond Exporation Vehicle Road Dust Vehicle Exhaust Frac Pump Engines  Subtotal CONSTRUCTION TOTAL  Vehicle Road Dust                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CO           | NO <sub>x</sub>                                                                                            |                                                                                                                            | PM <sub>19</sub> 0.1841 2.2488 0.0169 2.4478 0.0027 0.0000 0.2119 0.1080 0.0311 0.0015 7.0221 0.1220 0.1456 9.7021                                    | PM <sub>2.5</sub> 0.0276 0.02247 0.0006 0.2529 0.0003 0.0000 0.1060 0.0311 0.1063 0.0015 1.1848 0.0163 0.0163                    | VOCs  VOCs                                                                                                                                                                           | Formaldehyde                                                                | Cons/well   Benzene                                                                               |                                                   | Xylene                                                                | Ethylbenzene 0.0000 0.0000        |                                                                        | 11.7530<br>1.3527<br>13.1057<br>1.8434<br>736.9200<br>736.9200<br>738.7634<br>24.0000<br>                                                                                                                         | CH4                                                                                                               | N <sub>2</sub> C 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0020 0.0020 0.0000 0.0000 0.0000 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| CONSTRUCTION AND PRODUCTION TOTAL 4.5200 7.3613 0.1716 15.9686 2.2385 16.8989 0.0264 0.0505 0.0021 0.0014 0.0000 0.2508 1082.2536 0.0424 0.021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Jotes: Construction emissions are based on reell pad construction.  Source Type Vell Pad Construction General Activity Vehicle Road Dust Equipment Exhaust Vehicle Exhaust Torilling Engines - Tier 4a (2011) Drilling Engines - Tier 4a (2011) Subtotal (with Tier 4a drilling) Completion and Testing Flaring Waste Pond Exaporation Vehicle Exhaust Frac Pump Engines Subtotal CONSTRUCTION TOTAL Velil Production Heater/Treater Condensate Tanks Gas Generator Wind Blown Dust Vehicle Road Dust Vehicle Road Dust Vehicle Road Dust                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CO           | NO <sub>2</sub> 0.1713 0.0051 0.1765 0.0072 5.3684 3.6731 3.6803 0.0200 1.7515 5.6083 0.2147 1.5243 0.0140 | 50 <sub>2</sub> 0.0169 0.0000 0.0169 0.0000 0.0394 0.0394 0.0394 0.0394 0.0001 0.0000 0.1137 0.1701 0.0013 0.00002 0.00002 | PM <sub>10</sub> 0.1841 2.2468 0.0169                                                                                                                 | Err PM2.5 0.0276 0.2247 0.0006 0.0006 0.2529 0.0003 0.0000 0.2119 0.1063 0.0015 0.0015 0.0222 0.0227 1.1848 0.0163 0.0163        | VOCs                                                                                                                                                                                 | Source Category Formaldehyde                                                | Benzene                                                                                           |                                                   |                                                                       | Ethylbenzene                      |                                                                        | 11.7530 1.3527 13.1057 1.3527 13.1057 1.8434 756.9200 738.9200 738.7634 24.0000 3.3685 63.7560 27.3685 779.2375 257.6471 41.0975 4.2715                                                                           | CH <sub>4</sub> 0.0006 0.0001 0.0006 0.0002 0.0355 0.0355 0.0357 0.0006 0.0006 0.0007 0.0002 0.0142 0.0006        | N <sub>2</sub> C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| PRODUCTION TOTAL 4.5200 7.3613 0.1716 15.9686 2.2385 16.8989 0.0264 0.0505 0.0021 0.0014 0.0000 0.2508 1082.2536 0.0424 0.024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Source Type  Source Type  Veil Pad Construction  General Activity Vehicle Road Dust Vehicle Exhaust Jordina Farjines - Tier 4a (2011) Subtotal (with Tier 4a drilling) Flaining Waste Pond Evaporation Vehicle Road Dust Vehicle Exhaust Frace Pump Engines  Subtotal CONSTRUCTION TOTAL  Velil Production Heater/Treater Condensate Tanks Gas Generator Wind Blown Dust Vehicle Exhaust                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CO           | NO <sub>x</sub>                                                                                            | SO <sub>2</sub>                                                                                                            | PM <sub>10</sub> 0.1941 2.2468 0.0169 2.4478 0.0002 0.0000 0.2119 0.1060 0.0015 7.0221 0.1220 7.1456 9,7021 0.0163 0.0000 0.8247 5.4255 6.2665        | Err PM2.5 0.0276 0.2247 0.0006 0.2529 0.0003 0.0000 0.2119 0.1060 0.0165 0.0015 0.7022 1.1848 0.0163 0.0000 0.4948 0.5425 1.0853 | VOCs  VOCs  0.0142 0.0038 0.0181 0.0051 1.4/127 0.4238 0.1978 0.0011 0.3500 0.0011 0.3500 0.0118 15.9300 0.9470 0.0118 15.9300                                                       | Formaldehyde                                                                | Cons/well   Benzene                                                                               | Toluene                                           | Xylene                                                                | Ethylbenzene                      | 0.0000 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009         | 11.7530<br>1.3527<br>13.1057<br>1.8434<br>736.9200<br>736.9200<br>738.9200<br>738.7634<br>24.0000<br>                                                                                                             | CH <sub>4</sub>                                                                                                   | N <sub>2</sub> C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| otes:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | otes: Construction emissions are based on elil pad construction.  Source Type  /ell Pad Construction General Activity Vehicle Road Dust Equipment Exhaust Vehicle Exhaust Torlling Engines - Tier 4a (2011) Subtotal (with Tier 4a drilling) Ompletion and Testing Flaring Vehicle Exhaust Frac Pump Engines Subtotal  CONSTRUCTION TOTAL  /ell Production Heater/Treater Condensate Tanks Gas Generator Wind Blown Dust Vehicle Road Dust Vehicle Exhaust Subtotal  PRODUCTION TOTAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CO           | NO <sub>x</sub>                                                                                            | SO <sub>2</sub>                                                                                                            | PM <sub>10</sub> 0.1941 2.2468 0.0169 2.4478 0.0002 0.0000 0.2119 0.1060 0.0015 7.0221 0.1220 7.1456 9,7021 0.0163 0.0000 0.8247 5.4255 6.2665        | Err PM2.5 0.0276 0.2247 0.0006 0.2529 0.0003 0.0000 0.2119 0.1060 0.0165 0.0015 0.7022 1.1848 0.0163 0.0000 0.4948 0.5425 1.0853 | VOCs  VOCs  0.0142 0.0038 0.0181 0.0051 1.4/127 0.4238 0.1978 0.0011 0.3500 0.0011 0.3500 0.0118 15.9300 0.9470 0.0118 15.9300                                                       | Formaldehyde                                                                | Cons/well   Benzene                                                                               | Toluene                                           | Xylene                                                                | Ethylbenzene                      | 0.0000 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009         | 11.7530<br>1.3527<br>13.1057<br>1.8434<br>736.9200<br>736.9200<br>738.9200<br>738.7634<br>24.0000<br>                                                                                                             | CH <sub>4</sub>                                                                                                   | N <sub>2</sub> C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | otes: Construction emissions are based on ell pad construction.  Source Type  Veil Pad Construction General Activity Vehicle Road Dust Equipment Exhaust Vehicle Exhaust Subtotal PRODUCTION TOTAL CONSTRUCTION AND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CO           | NO <sub>x</sub>                                                                                            | SO <sub>2</sub>                                                                                                            | PM <sub>10</sub> 0.1841 2.2468 0.0169 2.4478 0.0027 0.0000 0.2119 0.1060 0.0311 0.0015 7.0221 0.1220 7.1456 9.7021 0.0163 0.0000 0.8247 5.4255 6.2665 | Err PM2.5 0.0276 0.2247 0.0006 0.2529 0.0003 0.0000 0.2119 0.1060 0.0015 0.7022 1.1848 0.0163 0.00163 1.0537                     | VOCs  VOCs  0.0142 0.0038 0.0181 0.025 0.4238 0.1978 0.4238 0.1978 0.0011 0.3500 0.0011 0.3500 0.0118 15.9300 0.9470 0.0118 15.9300 0.0118 15.9319                                   | Formaldehyde                                                                | Cons/well                                                                                         | Toluene                                           | Xylene                                                                | Ethylbenzene                      | 0.0000 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.02498 0.2498 0.2499 | 11.7530<br>1.3527<br>13.1057<br>1.8434<br>736.9200<br>736.9200<br>738.7634<br>24.0000<br>                                                                                                                         | CH <sub>4</sub> 0.0006 0.0001 0.0006 0.0001 0.0002 0.0355 0.0355 0.0355 0.0005 0.0005 0.0006 0.0006 0.0006 0.0006 | N <sub>2</sub> O<br>0.000<br>0.000<br>0.000<br>0.027<br>0.022<br>0.022<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.0000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.0000<br>0.000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.00000<br>0.0000<br>0.0000<br>0.00000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.00000<br>0 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | otes: Construction emissions are based on ell pad construction.  Source Type  Fell Pad Construction General Activity Vehicle Road Dust Equipment Exhaust Vehicle Exhaust Torilling Engines - Tier 4a (2011) Subtotal (with Tier 4a drilling) Ompletion and Testing Flaring Waste Pond Exaporation Vehicle Road Dust Vehicle Exhaust Frac Pump Engines Subtotal CONSTRUCTION TOTAL  Fell Production Heater/Treater Condensate Tanks Gas Generator Wind Blown Dust Vehicle Exhaust PRODUCTION TOTAL CONSTRUCTION AND PRODUCTION TOTAL.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CO           | NO <sub>x</sub>                                                                                            | SO <sub>2</sub>                                                                                                            | PM <sub>10</sub> 0.1841 2.2468 0.0169 2.4478 0.0027 0.0000 0.2119 0.1060 0.0311 0.0015 7.0221 0.1220 7.1456 9.7021 0.0163 0.0000 0.8247 5.4255 6.2665 | Err PM2.5 0.0276 0.2247 0.0006 0.2529 0.0003 0.0000 0.2119 0.1060 0.0015 0.7022 1.1848 0.0163 0.00163 1.0537                     | VOCs  VOCs  0.0142 0.0038 0.0181 0.025 0.4238 0.1978 0.4238 0.1978 0.0011 0.3500 0.0011 0.3500 0.0118 15.9300 0.9470 0.0118 15.9300 0.0118 15.9319                                   | Formaldehyde                                                                | Cons/well                                                                                         | Toluene                                           | Xylene                                                                | Ethylbenzene                      | 0.0000 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.02498 0.2498 0.2499 | 11.7530<br>1.3527<br>13.1057<br>1.8434<br>736.9200<br>736.9200<br>738.7634<br>24.0000<br><br>3.3685<br>63.7560<br>27.3685<br>779.2375<br>257.6471<br><br>41.0975<br><br>4.2715<br>303.0161                        | CH <sub>4</sub> 0.0006 0.0001 0.0006 0.0001 0.0002 0.0355 0.0355 0.0355 0.0005 0.0005 0.0006 0.0006 0.0006 0.0006 | N <sub>2</sub> C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

| Vehicle Road Dust                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                      |          |                 |                 |                    |                   | EWIIS              | SION SUMMARY    | 2020                |         |              |              |        |                        |                 |                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|----------|-----------------|-----------------|--------------------|-------------------|--------------------|-----------------|---------------------|---------|--------------|--------------|--------|------------------------|-----------------|------------------|
| No.   Part   P   |                                      |          |                 |                 |                    | Е                 | missions by        | Source Categor  | y (lbs/well)        |         |              |              |        |                        |                 |                  |
| General Activity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Source Type                          | СО       | NO <sub>x</sub> | SO <sub>2</sub> | PM <sub>10</sub>   | PM <sub>2.5</sub> | VOCs               | Formaldehyde    | Benzene             | Toluene | Xylene       | Ethylbenzene | Hexane | CO <sub>2</sub>        | CH <sub>4</sub> | N <sub>2</sub> O |
| Vehicle Road Dust                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                      |          |                 |                 |                    |                   |                    |                 |                     |         |              |              |        |                        |                 |                  |
| Equipment Exhaust                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ,                                    |          |                 |                 | 368.2              | 55.2              |                    |                 |                     |         |              |              |        | -                      |                 |                  |
| Vehicle Exhaust                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |          |                 |                 | 4493.6             | 449.4             | -                  | -               |                     |         |              |              |        | -                      |                 |                  |
| Neil Construction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                      |          |                 |                 | 33.8               | 1.2               | 28.5               | 0.17            | 0.13                | 0.06    | 0.04         |              | -      | 23,506                 | 1.13            | 0.70             |
| Well Construction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                      |          |                 |                 |                    |                   | 7.6                | 0.02            | 0.02                | 0.0065  | 0.0045       |              |        | 2,705                  | 0.12            | 0.08             |
| Vehicle Road Dust                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                      | 1 132.61 | 352.95          | 33.77           | 4,895.55           | 505.78            | 36.13              | 0.19            | 0.15                | 0.06    | 0.05         | 0.00         | 0.00   | 26,211.35              | 1.26            | 0.77             |
| Vehicle Exhaust                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |          |                 |                 |                    |                   |                    |                 |                     |         |              |              |        |                        |                 |                  |
| Drilling Engines - Tier 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                      |          |                 |                 | 5.5                | 0.5               |                    | -               |                     |         |              | -            | -      |                        |                 |                  |
| Drilling Engines - Tier 4a (2011)         7,346.2         7,346.2         7,86.2         7,86.2         7,86.2         7,86.2         7,86.2         7,86.2         7,86.2         7,86.2         7,86.2         7,86.2         7,86.2         7,86.2         7,86.2         7,86.2         7,86.2         7,86.2         7,86.2         7,88.2         2           Completion and Testing Flaring         3.3.6         40.0         0.2         4         0.0         0.2         4         0.0         0.2         4         0.0         0.2         4         0.0         0.2         4         0.0         0.0         2         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0 </td <td></td> <td></td> <td></td> <td></td> <td>0.0</td> <td>0.1</td> <td>10.3</td> <td>0.14</td> <td>0.09</td> <td>0.03</td> <td>0.02</td> <td></td> <td>-</td> <td>3,687</td> <td>0.34</td> <td>0.34</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                      |          |                 |                 | 0.0                | 0.1               | 10.3               | 0.14            | 0.09                | 0.03    | 0.02         |              | -      | 3,687                  | 0.34            | 0.34             |
| Drilling Engines - Tier 4b (2015) Subtotal (with Tier 4b drilling) Completion and Testing Flaring Waste Pond Evaporation Vehicle Road Dust Vehicle Exhaust Frac Pump Engines Subtotal (Assert Construction Note) CONSTRUCTION AND PRODUCTION TOTAL CONSTRUCTION AND PRODUCTION TOTAL CONSTRUCTION TOTAL CONSTRUCTION AND PRODUCTION TOTAL CONSTRUCTION TOTAL CONSTRUCTION AND PRODUCTION TOTAL CONSTRUCTION CONSTRUCTION CONSTRUCTION CONSTRUCTION CONSTRUCTION AND CONSTRUCTION AND PRODUCTION TOTAL CONSTRUCTION CONSTRUCTIO |                                      |          |                 |                 | 423.8              | 423.8<br>211.9    | 2,825.5<br>847.6   | 10.59           | 8.37<br>8.37        | 3.67    | 2.56         |              | -      | 1,473,840<br>1,473,840 | 71.09<br>71.09  | 43.75            |
| Subtotal (with Tier 4b drilling)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                      |          |                 |                 | 62.2               | 62.2              | 395.6              | 10.59           | 8.37                | 3.67    | 2.56         |              | -      | 1,473,840              | 71.09           | 43.75            |
| Dompletton and Testing   Filaring   33.6   40.0   0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                      |          |                 |                 | 67.62              | 62.76             | 405.82             | 10.39           | 8.46                | 3.69    | 2.57         | 0.00         | 0.00   | 1,477,526.72           | 71.43           | 44.0             |
| Flaring   33.6   40.0   0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                      | 7,393.41 | 7,360.60        | 70.02           | 67.62              | 02.76             | 405.62             | 10.73           | 0.40                | 3.09    | 2.51         | 0.00         | 0.00   | 1,477,320.72           | 71.43           | 44.0             |
| Waste Pond Evaporation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                      | 22.6     | 40.0            | 0.2             | 3.0                | 3.0               | 2.2                |                 | 0.00                | 0.00    |              |              | 1.81   | 48,000                 | 0.92            | 0.88             |
| Vehicle Road Dust                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                      |          |                 |                 | 3.0                | 3.0               | 700.0              | -               | 0.00                | 0.00    |              |              | 1.01   | 48,000                 | 0.92            | 0.00             |
| Vehicle Exhaust                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |          |                 |                 | 14,044.3           | 1,404.4           | 700.0              |                 | -                   |         |              | -            | -      | -                      |                 |                  |
| Table   Tabl   |                                      |          | 25.7            |                 | 14,044.3           | 1,404.4           | 19.0               | 0.07            | 0.06                | 0.02    | 0.01         | -            | -      | 6,737                  | 0.34            | 0.24             |
| Subtotal   845.48   3,503.00   227.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                      |          |                 |                 | 242.0              | 242.0             | 278.8              | 0.92            |                     | 0.32    |              |              | -      | 127.512                | 28.31           | 0.24             |
| CONSTRUCTION TOTAL   8,371.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                      |          |                 |                 | 243.9<br>14.291.27 | 243.9<br>1,651.41 | 999.96             | 0.92            | 0.72<br><b>0.78</b> | 0.32    | 0.22<br>0.23 | 0.00         | 1.81   | 182.248.92             | 29.57           | 1.12             |
| Moll Production                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |          |                 |                 |                    |                   |                    |                 |                     |         |              | 0.00         |        |                        |                 |                  |
| Heater/Treater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                      | 6,3/1.49 | 11,210.54       | 340.17          | 19,254.43          | 2,219.94          | 1,441.92           | 11.91           | 9.39                | 4.10    | 2.85         | 0.00         | 1.81   | 1,685,986.99           | 102.26          | 45.9             |
| Condensate Tanks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ater/Treater                         | 360.7    | 420.4           | 26              | 32.6               | 32.6              | 23.6               | 0.32            | 0.01                | 0.01    |              |              |        | 515,294                | 9.88            | 9.45             |
| Gas Generator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                      | 300.7    | 429.4           | 2.0             | 32.0               | 32.6              |                    | 0.32            | 91.80               | 0.01    |              | -            | 499.50 | 515,294                | 9.88            | 9.45             |
| Wind Blown Dust                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      | 236.0    | 3 048 7         | 0.4             | 0.1                | 0.1               | 31,860.0           | 41.25           | 0.33                | 0.30    | 0.14         | 0.03         | 0.33   | 82,195                 |                 | -                |
| Vehicle Road Dust                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                      |          |                 |                 | 1.649.3            | 989.6             | -                  | 41.25           | 0.33                | 0.30    | 0.14         | 0.03         | 0.33   | 82,195                 |                 |                  |
| Vehicle Exhaust   Subtotal   68.43   3,506.10   3.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | =                                    |          |                 |                 | .,                 |                   | -                  |                 |                     |         |              | -            | -      | -                      |                 |                  |
| Subtotal   668.43   3,506.10   3,05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                      | 70.0     | 20.0            |                 | 10,851.0           | 1,085.1           | 20.1               | 0.22            | 0.17                | 0.05    | 0.03         |              | -      | 8.543                  | 0.90            | 0.65             |
| PRODUCTION TOTAL   668.43   3,506.10   3.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                      |          |                 |                 | 12,532.99          | 2,107.38          | 31,903.76          | 41.78           | 92.31               | 0.05    | 0.03         | 0.03         | 499.83 | 606,032.24             | 10.78           | 10.10            |
| CONSTRUCTION AND PRODUCTION TOTAL   9,039.92   14,722.65   343.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PRODUCTION TOTAL                     | 669.43   |                 |                 | 12,532.99          | 2,107.38          | 31,903.76          | 41.78           | 92.31               | 0.37    | 0.17         | 0.03         | 499.83 | 606,032.24             | 10.78           | 10.10            |
| PRODUCTION TOTAL   9,039.92   14,722.65   343.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                      |          | 3,300.10        | 3.03            | 12,332.99          | 2,107.36          | 31,903.76          | 41.70           | 92.31               | 0.37    | 0.17         | 0.03         | 499.03 | 000,032.24             | 10.76           | 10.10            |
| Source Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                      |          |                 |                 |                    |                   |                    |                 |                     |         |              |              |        |                        |                 |                  |
| Source Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PRODUCTION TOTAL                     | 9,039.92 | 14,722.65       | 343.22          | 31,787.42          | 4,327.32          | 33,345.67          | 53.69           | 101.70              | 4.47    | 3.03         | 0.03         | 501.64 | 2,292,019.24           | 113.04          | 56.09            |
| Well Pad Construction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                      |          |                 |                 |                    | Er                | nissions by S      | Source Category | (tons/well)         |         |              |              |        |                        |                 |                  |
| Veli Pad Construction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Source Type                          | СО       | NO <sub>x</sub> | SO <sub>2</sub> | PM <sub>10</sub>   | PM <sub>2.5</sub> | VOCs               | Formaldehyde    | Benzene             | Toluene | Xylene       | Ethylbenzene | Hexane | CO <sub>2</sub>        | CH <sub>4</sub> | N <sub>2</sub> C |
| Vehicle Road Dust                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                      | 1        |                 |                 |                    |                   |                    |                 |                     |         |              |              |        |                        |                 |                  |
| Equipment Exhaust                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | eneral Activity                      |          |                 |                 | 0.1841             | 0.0276            |                    |                 |                     |         |              |              |        |                        |                 |                  |
| Vehicle Exhaust   0.0139   0.0051   0.0000     Well Construction   0.0663   0.1765   0.0169     Well Construction   0.0663   0.1765   0.0169     Wehicle Road Dust                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                      |          |                 |                 | 2.2468             | 0.2247            |                    | -               |                     |         |              |              |        | -                      |                 |                  |
| Vehicle Exhaust   0.0139   0.0051   0.0000     Well Construction   0.0663   0.1765   0.0169     Well Construction   0.0663   0.1765   0.0169     Wehicle Road Dust                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | uipment Exhaust                      | 0.0524   | 0.1713          | 0.0169          | 0.0169             | 0.0006            | 0.0142             | 0.0001          | 0.0001              | 0.0000  | 0.0000       |              |        | 11.7530                | 0.0006          | 0.000            |
| Well Construction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                      | 0.0139   |                 |                 |                    |                   | 0.0038             | 0.0000          | 0.0000              | 0.0000  | 0.0000       |              |        | 1.3527                 | 0.0001          | 0.000            |
| Vehicle Road Dust                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Subtota                              | 0.0663   | 0.1765          | 0.0169          | 2.4478             | 0.2529            | 0.0181             | 0.0001          | 0.0001              | 0.0000  | 0.0000       | 0.0000       | 0.0000 | 13.1057                | 0.0006          | 0.000            |
| Vehicle Exhaust                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | I Construction                       |          |                 |                 |                    |                   |                    |                 |                     |         |              |              |        |                        |                 |                  |
| Drilling Engines - Tier 2         3,6731         5,3684         0,0394           Drilling Engines - Tier 4a (2011)         3,6731         3,6731         0,0394           Drilling Engines - Tier 4b (2015)         3,6731         3,6731         0,0394           Subbtoal (with Tier 4b drilling)         3,6967         3,6803         0,0394           Completion and Testing         0,0168         0,0200         0,0001           Flairing         0,0168         0,0200         0,0001           Waste Pond Evaporation         -         -         -           Vehicle Exhaust         0,0356         0,0129         0,0000           Frac Pump Engines         0,3703         1,7186         0,1137           Subtotal         0,4227         1,7515         0,1138           Well Production         0,1804         0,2147         0,013           Heater/Treater         0,1804         0,2147         0,001           Condensate Tanks         -         -         -           Gas Generator         0,1184         1,5243         0,0002           Wind Blown Dust         -         -         -           Vehicle Exhaust         0,0354         0,0140         0,0000           PRODUCTION TOTAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | hicle Road Dust                      |          |                 |                 | 0.0027             | 0.0003            |                    | -               |                     |         |              |              |        | -                      |                 |                  |
| Drilling Engines - Tier 4a (2011)         3.6731         3.6731         0.0394           Drilling Engines - Tier 4b (2015)         3.6731         3.6731         0.0394           Subtotal (with Tier 4b drilling)         3.6967         3.6803         0.0394           Completion and Testing Flaring         0.0168         0.0200         0.0001           Flaining         0.0168         0.0200         0.0001           Waste Pond Evaporation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                      | 0.0236   | 0.0072          |                 | 0.0000             | 0.0000            | 0.0051             | 0.0001          | 0.0000              | 0.0000  | 0.0000       |              |        | 1.8434                 | 0.0002          | 0.000            |
| Drilling Engines - Tier 4a (2011)         3.6731         3.6731         0.0394           Drilling Engines - Tier 4b (2015)         3.6931         3.6731         0.0394           Subtotal (with Tier 4b drilling)         3.6967         3.6803         0.0394           Completion and Testing         0.0168         0.0200         0.0001           Flaring         0.0168         0.0200         0.0001           Waste Pond Evaporation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | illing Engines - Tier 2              |          |                 |                 | 0.2119             | 0.2119            | 1.4127             | 0.0053          | 0.0042              | 0.0018  | 0.0013       |              | -      | 736.9200               | 0.0355          | 0.021            |
| Subtotal (with Tier 4b drilling)   3.6967   3.6803   0.0394                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | illing Engines - Tier 4a (2011)      |          |                 |                 | 0.1060             | 0.1060            | 0.4238             | 0.0053          | 0.0042              | 0.0018  | 0.0013       |              | -      | 736.9200               | 0.0355          | 0.021            |
| Completion and Testing   Flaring   0.0168   0.0200   0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                      |          |                 |                 | 0.0311             | 0.0311            | 0.1978             | 0.0053          | 0.0042              | 0.0018  | 0.0013       | -            | -      | 736.9200               | 0.0355          | 0.021            |
| Flaring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Subtotal (with Tier 4b drilling      | 3.6967   | 3.6803          | 0.0394          | 0.0338             | 0.0314            | 0.2029             | 0.0054          | 0.0042              | 0.0018  | 0.0013       | 0.0000       | 0.0000 | 738.7634               | 0.0357          | 0.022            |
| Waste Pond Evaporation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                      |          |                 |                 |                    |                   |                    |                 |                     |         |              |              |        |                        |                 |                  |
| Vehicle Road Dust                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                      | 0.0168   | 0.0200          | 0.0001          | 0.0015             | 0.0015            | 0.0011             |                 | 0.0000              | 0.0000  |              |              | 0.0009 | 24.0000                | 0.0005          | 0.000            |
| Vehicle Exhaust<br>Frac Pump Engines         0.0356<br>0.03703         0.0129<br>1.1786         0.0000<br>0.1137           Subtotal<br>CONSTRUCTION TOTAL         4.1857         5.6083         0.1701           Nell Production<br>Heater/Treator         0.1804         0.2147         0.0013           Gas Generator         0.1184         1.5243         0.0002           Wind Blown Dust<br>Vehicle Road Dust         -         -         -           Vehicle Exhaust         Subtotal<br>0.0354         0.0140<br>0.0000         0.0000<br>0.0015           PRODUCTION TOTAL         0.3342<br>0.3342         1.7531<br>1.7531         0.0015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                      |          |                 |                 | -                  | -                 | 0.3500             | -               | -                   | -       |              |              | -      | -                      |                 |                  |
| 0.3703   1.7186   0.1137                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                      |          |                 |                 | 7.0221             | 0.7022            |                    | -               |                     |         |              |              |        | -                      |                 |                  |
| Subtotal   0.4227   1.7515   0.1138                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                      |          |                 |                 |                    |                   | 0.0095             | 0.0000          | 0.0000              | 0.0000  | 0.0000       |              |        | 3.3685                 | 0.0002          | 0.000            |
| CONSTRUCTION TOTAL   4.1857   5.6083   0.1701                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ac Pump Engines                      |          |                 |                 | 0.1220             | 0.1220            | 0.1394             | 0.0005          | 0.0004              | 0.0002  | 0.0001       |              |        | 63.7560                | 0.0142          |                  |
| Well Production         0.1804         0.2147         0.0013           Heater/Treater         0.1804         0.2147         0.0013           Condensate Tanks         -         -         -           Gas Generator         0.1184         1.5243         0.0002           Wind Blown Dust         -         -         -           Vehicle Road Dust         -         -         -         -           Vehicle Exhaust         0.0354         0.0140         0.0000           PRODUCTION TOTAL         0.3342         1.7531         0.0015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                      |          |                 |                 | 7.1456             | 0.8257            | 0.5000             | 0.0005          | 0.0004              | 0.0002  | 0.0001       | 0.0000       | 0.0009 | 91.1245                | 0.0148          | 0.000            |
| Heater/Treater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                      | 4.1857   | 5.6083          | 0.1701          | 9.6272             | 1.1100            | 0.7210             | 0.0060          | 0.0047              | 0.0020  | 0.0014       | 0.0000       | 0.0009 | 842.9935               | 0.0511          | 0.023            |
| Condensate Tanks         -         -         -           Gas Generator         0.1184         1.5243         0.0002           Wind Blown Dust         -         -         -           Vehicle Road Dust         -         -         -         -           Vehicle Exhaust         0.0354         0.0140         0.0000           Vehicle Exhaust         Subtotal         0.3342         1.7531         0.0015           PRODUCTION TOTAL         0.3342         1.7531         0.0015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                      | 0.1904   | 0.2447          | 0.0012          | 0.0163             | 0.0163            | 0.0118             | 0.0002          | 0.0000              | 0.0000  |              |              |        | 257.6471               | 0.0049          | 0.004            |
| Gas Generator         0.1184         1.5243         0.0002           Wind Blown Dust              Vehicle Road Dust         0.0354         0.0140         0.0000           Subtotal         0.3342         1.7531         0.0015           PRODUCTION TOTAL         0.3342         1.7531         0.0015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                      | 0.1804   | 0.2147          | 0.0013          | 0.0163             | 0.0163            | 15.9300            | 0.0002          | 0.0000              | 0.0000  | -            | -            | 0.2498 | 207.0471               |                 |                  |
| Wind Blown Dust                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      | 0.1104   | 1 5242          | 0.0002          | 0.0000             | 0.0000            | 15.9300            | 0.0206          | 0.0459              | 0.0002  | 0.0001       | 0.0000       | 0.2498 | 41.0975                |                 |                  |
| Vehicle Exhaust         0.0354         0.0140         0.0000           Subtotal         0.3342         1.7531         0.0015           PRODUCTION TOTAL         0.3342         1.7531         0.0015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                      |          |                 |                 | 0.0000             | 0.0000            | -                  | 0.0206          | 0.0002              | 0.0002  | 0.0001       | 0.0000       | 0.0002 | 41.09/5                | -               |                  |
| Vehicle Exhaust         0.0354         0.0140         0.0000           Subtotal         0.3342         1.7531         0.0015           PRODUCTION TOTAL         0.3342         1.7531         0.0015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                      |          | +               |                 | 5.4255             | 0.4948            |                    |                 | -                   |         | -            | -            | -      |                        |                 |                  |
| Subtotal         0.3342         1.7531         0.0015           PRODUCTION TOTAL         0.3342         1.7531         0.0015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                      |          | 0.0140          |                 | 0.4200             | 0.0420            | 0.0101             | 0.0001          | 0.0001              | 0.0000  | 0.0000       |              |        | 4.2715                 | 0.0004          | 0.000            |
| PRODUCTION TOTAL 0.3342 1.7531 0.0015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | HILDE EXHIDEST                       |          |                 |                 | 6.2665             | 1.0537            |                    | 0.0001          | 0.0001              | 0.0000  | 0.0000       | 0.0000       | 0.2499 | 4.2/15<br>303.0161     | 0.0004          | 0.000            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C                                    | 0.3342   |                 |                 | 6.2665             | 1.0537            | 15.9519<br>15.9519 | 0.0209          | 0.0462              | 0.0002  | 0.0001       | 0.0000       | 0.2499 | 303.0161               | 0.0054          | 0.005            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Subtota                              |          | 1.7001          | 0.0015          | 0.2003             | 1.0557            | 10.9019            | 0.0209          | 0.0402              | 0.0002  | 0.0001       | 0.0000       | 0.2433 | 303.0101               | 0.0034          | 0.000            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PRODUCTION TOTA                      |          |                 |                 |                    |                   |                    |                 |                     | 0.0000  | 0.0015       | 0.0000       | 0.0500 | 1146.0096              | 0.0565          | 0.028            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PRODUCTION TOTAL<br>CONSTRUCTION AND |          | 7.3613          | 0.1716          | 15.8937            | 2.1637            | 16.6728            | 0.0268          | 0.0509              |         |              |              |        |                        |                 |                  |
| Notes:  Construction emissions are based on a per well constructed/drilled basis. C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PRODUCTION TOTAL<br>CONSTRUCTION AND |          | 7.3613          | 0.1716          | 15.8937            | 2.1637            | 16.6728            | 0.0268          | 0.0509              | 0.0022  | 0.0015       | 0.0000       | 0.2508 | 1146.0096              | 0.0303          |                  |

|                                                            |                  |                   |                   | CALF                | UFF MODELII         | IG - EMISSIO  | N SUMMARY                   | (2028)         |                  |        |        |              |                 |         |                  |
|------------------------------------------------------------|------------------|-------------------|-------------------|---------------------|---------------------|---------------|-----------------------------|----------------|------------------|--------|--------|--------------|-----------------|---------|------------------|
| <u>_</u>                                                   |                  |                   |                   | E                   | missions by S       | ource Categ   | ory <sup>1,2</sup> (g/s/wel | l)             |                  |        |        |              |                 |         |                  |
| O T                                                        | CO               | NO <sub>x</sub>   | SO <sub>2</sub>   | PM <sub>10</sub>    | PM <sub>2.5</sub>   | VOCs          |                             |                | Ethylbenzene     | Volume |        | Farmaldahada | CO <sub>2</sub> | CH₄     | N <sub>2</sub> O |
| Source Type Well Pad Construction <sup>3</sup>             | CO               | NUx               | 302               | PIVI <sub>10</sub>  | PIVI <sub>2.5</sub> | VUCS          | Benzene                     | roluene        | Ethylbenzene     | Xylene | Hexane | Formaldehyde | CO <sub>2</sub> | СП4     | N <sub>2</sub> U |
|                                                            |                  |                   |                   | 0.0053              | 0.0008              |               |                             |                |                  |        |        |              |                 |         |                  |
| General Activity                                           |                  | -                 |                   | 0.0053              | 0.0065              | -             | -                           |                | -                | -      |        |              |                 | -       |                  |
| Vehicle Road Dust Equipment Exhaust                        | 0.0015           | 0.0049            | 0.0005            | 0.0046              | 0.0000              | 0.0004        | 0.0000                      | 0.0000         | 0.0000           | 0.0000 |        |              | 0.3381          | 0.00002 | 0.0000           |
|                                                            |                  |                   |                   |                     |                     |               |                             |                |                  | 0.0000 |        |              |                 |         |                  |
| Vehicle Exhaust                                            | 0.0004<br>0.0019 | 0.0001            | 0.0000            | 0.0704              | 0.0070              | 0.0001        | 0.0000                      | 0.0000         | 0.0000           | 0.0000 | 0.0000 | 0.0000       | 0.0389          | 0.0000  | 0.0000           |
| Subtotal                                                   | 0.0019           | 0.0051            | 0.0005            | 0.0704              | 0.0073              | 0.0005        | 0.0000                      | 0.0000         | 0.0000           | 0.0000 | 0.0000 | 0.0000       | 0.3770          | 0.0000  | 0.0000           |
| Well Construction                                          |                  |                   |                   | 0.0004              | 0.0000              |               |                             |                |                  |        |        |              |                 |         |                  |
| Vehicle Road Dust                                          |                  |                   |                   | 0.0001              | 0.0000              |               |                             |                |                  |        |        |              |                 |         |                  |
| Vehicle Exhaust                                            | 0.0007           | 0.0002            | 0.0000            | 0.0000              | 0.0000              | 0.0001        | 0.0000                      | 0.0000         | 0.0000           | 0.0000 |        |              | 0.0530          | 0.0000  | 0.0000           |
| Drilling Engines - Tier 2                                  | 0.1057           | 0.1544            | 0.0011            | 0.0061              | 0.0061              | 0.0406        | 0.0002                      | 0.0001         | 0.0001           | 0.0000 |        |              | 21.1986         | 0.0010  | 0.0006           |
| Drilling Engines - Tier 4a (2011)                          | 0.1057           | 0.1057            | 0.0011            | 0.0030              | 0.0030              | 0.0122        | 0.0002                      | 0.0001         | 0.0001           | 0.0000 |        |              | 21.1986         | 0.0010  | 0.0006           |
| Drilling Engines - Tier 4b (2015)                          | 0.1057           | 0.1057            | 0.0011            | 0.0009              | 0.0009              | 0.0057        | 0.0002                      | 0.0001         | 0.0001           | 0.0000 |        |              | 21.1986         | 0.0010  | 0.0006           |
| Subtotal (with Tier 4b drilling)                           | 0.1063           | 0.1059            | 0.0011            | 0.0010              | 0.0009              | 0.0058        | 0.0002                      | 0.0001         | 0.0001           | 0.0000 | 0.0000 | 0.0000       | 21.2516         | 0.0010  | 0.0006           |
| Completion and Testing                                     |                  |                   |                   |                     |                     |               |                             |                |                  |        |        |              |                 |         |                  |
| Flaring                                                    | 0.0005           | 0.0006            | 0.0000            | 0.0000              | 0.0000              | 0.0000        |                             | 0.0000         | 0.0000           |        |        | 0.0000       | 0.6904          | 0.0000  | 0.0000           |
| Waste Pond Evaporation                                     |                  | -                 |                   | -                   |                     | 0.0101        |                             |                | -                | -      |        |              | -               |         |                  |
| Vehicle Road Dust                                          |                  |                   |                   | 0.2020              | 0.0202              |               |                             |                |                  |        |        |              | <b>-</b>        | -       |                  |
| Vehicle Exhaust                                            | 0.0010           | 0.0004            | 0.0000            |                     |                     | 0.0003        | 0.0000                      | 0.0000         | 0.0000           | 0.0000 |        |              | 0.0969          | 0.0000  | 0.0000           |
| Frac Pump Engines                                          | 0.0107           | 0.0494            | 0.0033            | 0.0035              | 0.0035              | 0.0040        | 0.0000                      | 0.0000         | 0.0000           | 0.0000 |        |              | 1.8340          | 0.0004  |                  |
| Subtotal                                                   | 0.0122           | 0.0504            | 0.0033            | 0.2056              | 0.0238              | 0.0144        | 0.0000                      | 0.0000         | 0.0000           | 0.0000 | 0.0000 | 0.0000       | 2.6213          | 0.0004  | 0.0000           |
| CONSTRUCTION TOTAL                                         | 0.1204           | 0.1613            | 0.0049            | 0.2769              | 0.0319              | 0.0207        | 0.0002                      | 0.0001         | 0.0001           | 0.0000 | 0.0000 | 0.0000       | 24.2500         | 0.0015  | 0.0007           |
| Well Production                                            |                  |                   |                   |                     |                     |               |                             |                |                  |        |        |              |                 |         |                  |
| Heater/Treater                                             | 0.0052           | 0.0062            | 0.0000            | 0.0005              | 0.0005              | 0.0003        | 0.0000                      | 0.0000         | 0.0000           |        |        |              | 7.4116          | 0.0001  | 0.0001           |
| Condensate Tanks                                           |                  |                   |                   |                     |                     | 0.4583        |                             | 0.0013         |                  |        |        | 0.0072       |                 | -       |                  |
| Gas Generator                                              | 0.0034           | 0.0439            | 0.0000            | 0.0000              | 0.0000              |               | 0.0006                      | 0.0000         | 0.0000           | 0.0000 | 0.0000 | 0.0000       | 1.1822          |         |                  |
| Wind Blown Dust                                            |                  |                   |                   | 0.0237              | 0.0142              |               |                             |                |                  |        |        |              | -               | -       |                  |
| Vehicle Road Dust                                          |                  |                   |                   | 0.1561              | 0.0156              |               |                             |                |                  |        |        |              |                 |         |                  |
| Vehicle Exhaust                                            | 0.0010           | 0.0004            | 0.0000            |                     |                     | 0.0003        | 0.0000                      | 0.0000         | 0.0000           | 0.0000 |        |              | 0.1229          | 0.0000  | 0.0000           |
| Subtotal                                                   | 0.0096           | 0.0504            | 0.0000            | 0.1803              | 0.0303              | 0.4589        | 0.0006                      | 0.0013         | 0.0000           | 0.0000 | 0.0000 | 0.0072       | 8.7167          | 0.0002  | 0.0001           |
| PRODUCTION TOTAL                                           | 0.0096           | 0.0504            | 0.0000            | 0.1803              | 0.0303              | 0.4589        | 0.0006                      | 0.0013         | 0.0000           | 0.0000 | 0.0000 | 0.0072       | 8.7167          | 0.0002  | 0.0001           |
| ONSTRUCTION AND PRODUCTION TOTAL                           | 0.1300           | 0.2118            | 0.0049            | 0.4572              | 0.0622              | 0.4796        | 0.0008                      | 0.0015         | 0.0001           | 0.0000 | 0.0000 | 0.0072       | 32.9667         | 0.0016  | 0.0008           |
| Notes:                                                     |                  |                   |                   |                     |                     |               |                             |                |                  |        |        |              |                 |         |                  |
| Assumes emissions per well.                                |                  |                   |                   | 1                   |                     |               |                             |                |                  |        |        |              |                 |         |                  |
|                                                            |                  |                   |                   |                     |                     |               |                             |                |                  |        |        |              |                 |         |                  |
| <sup>2</sup> Emissions are spread over 8,760 hours per yea |                  |                   |                   |                     |                     |               |                             |                |                  |        |        |              |                 |         |                  |
| <sup>3</sup> Construction emissions occur only in the year | that a well pad  | is constructed ar | nd associated wel | Is are drilled. All | drilling is assu    | med to be cor | npleted in the v            | vear of well p | ad construction. |        |        |              |                 |         |                  |

|                                                | No of Wells      | No of           |                  | Are                    | ea Source #2           |                        |                         |           | Are             | ea Source #2a   | Area Source #2b  |                   |           |                 |                 |                  |                   |
|------------------------------------------------|------------------|-----------------|------------------|------------------------|------------------------|------------------------|-------------------------|-----------|-----------------|-----------------|------------------|-------------------|-----------|-----------------|-----------------|------------------|-------------------|
|                                                | Constructed in   | Producing       | Dri              | II Rig Engines (       | Construction)          |                        |                         |           |                 | ction of New W  | ells             |                   |           | Producti        | on of Exisit    | ing Wells        |                   |
| Alternative B (modeled year 2028)              | 2028             | Wells in 2028   | CO               | NO <sub>x</sub>        | SO <sub>2</sub>        | PM <sub>10</sub> (PMC) | PM <sub>2.5</sub> (PMF) | СО        | NO <sub>x</sub> | SO <sub>2</sub> | PM <sub>10</sub> | PM <sub>2.5</sub> | CO        | NO <sub>x</sub> | SO <sub>2</sub> | PM <sub>10</sub> | PM <sub>2.5</sub> |
| Coolmont Minhenra                              | 12               | 234             | 1.268E+00        | 1.268E+00              | 1.360E-02              | 1.073E-02              | 1.073E-02               | 1.770E-01 | 6.680E-01       | 4.511E-02       | 3.313E+00        | 3.724E-01         | 2.250E+00 | 1.180E+01       | 1.026E-02       | 4.218E+01        | 7.093E+00         |
| Colvi                                          | 0                | 40              | 0.0              | 0.0                    | 0.0                    | 0.0                    | 0.0                     | 0.000E+00 |                 | 0.000E+00       |                  | 0.000E+00         |           |                 |                 | 7.211E+00        |                   |
| Granby Anticline                               | 0                | 16              | 0.0              | 0.0                    | 0.0                    | 0.0                    | 0.0                     | 0.000E+00 |                 | 0.000E+00       | 0.000E+00        |                   | 1.538E-01 |                 |                 | 2.884E+00        |                   |
| McCallum and South McCallum Infill             | 2                | 40              | 2.113E-01        | 2.113E-01              | 2.267E-03              | 1.788E-03              | 1.788E-03               | 2.949E-02 |                 | 7.518E-03       |                  | 6.207E-02         |           |                 |                 | 7.211E+00        |                   |
| Other North and Middle Park Field Infill       | 1                | 20              | 1.057E-01        | 1.057E-01              | 1.134E-03              | 8.941E-04              | 8.941E-04               | 1.475E-02 |                 | 3.759E-03       |                  | 3.104E-02         |           |                 |                 | 3.605E+00        |                   |
| Rank Wildcats                                  | 1                | 20              | 1.057E-01        | 1.057E-01              | 1.134E-03              | 8.941E-04              | 8.941E-04               | 1.475E-02 |                 | 3.759E-03       |                  | 3.104E-02         |           |                 |                 | 3.605E+00        |                   |
| TOTAL                                          | 16               | 370             | 1.69             | 1.69                   | 0.02                   | 0.01                   | 0.01                    | 0.24      | 0.89            | 0.06            | 4.42             | 0.50              | 3.56      | 18.66           | 0.02            | 66.70            | 11.22             |
| Alternative B (modeled year 2028)              |                  |                 |                  |                        | ea Source #1           |                        |                         |           |                 |                 |                  |                   |           |                 |                 |                  |                   |
|                                                |                  |                 | Construction     | of New Wells a         |                        |                        |                         |           |                 |                 |                  |                   |           |                 |                 |                  |                   |
| Coalmont Niobrara (CN)                         | 12               | 234             | 2.427E+00        | 1.247E+01              | 5.537E-02              |                        | 7.465E+00               |           |                 |                 |                  |                   |           |                 |                 |                  |                   |
| CBM (CBMa, CBMb, CBMc)                         | 0                | 40              |                  | 2.017E+00              | 1.754E-03              | 7.211E+00              |                         |           |                 |                 |                  |                   |           |                 |                 |                  |                   |
| СВМа                                           |                  |                 |                  | 9.075E-01              | 7.892E-04              | 3.244E+00              | 5.455E-01               | CBM a     | 329,051,182.82  | 45.0%           |                  |                   |           |                 |                 |                  |                   |
| CBMb                                           |                  |                 |                  | 5.402E-01              | 4.698E-04              | 1.931E+00              | 3.247E-01               | CBM b     | 195,874,382.75  | 26.8%           |                  |                   |           |                 |                 |                  |                   |
| CBMc                                           |                  |                 |                  | 5.695E-01              | 4.952E-04              | 2.036E+00              | 3.423E-01               | СВМ с     | 206,478,165.68  | 28.2%           |                  |                   |           |                 |                 |                  |                   |
| Granby Anticline (GA)                          | 0                | 16              | 1.538E-01        | 8.069E-01              | 7.016E-04              | 2.884E+00              | 4.850E-01               |           |                 |                 |                  |                   |           |                 |                 |                  |                   |
| McCallum and South McCallum Infill (MC)        | 2                | 40              | 4.141E-01        | 2.129E+00              | 9.272E-03              | 7.763E+00              | 1.275E+00               |           |                 |                 |                  |                   |           |                 |                 |                  |                   |
| Other North and Middle Park Field Infill (OTH) | 1                | 20              | 2.070E-01        | 1.064E+00              | 4.636E-03              | 3.881E+00              | 6.373E-01               |           |                 |                 |                  |                   |           |                 |                 |                  |                   |
| Rank Wildcats (RW)                             | 1                | 20              | 2.070E-01        | 1.064E+00              | 4.636E-03              | 3.881E+00              | 6.373E-01               |           |                 |                 |                  |                   |           |                 |                 |                  |                   |
| TOTAL                                          | 16               | 370             | 3.79             | 21.57                  | 0.08                   | 78.33                  | 12.92                   |           |                 |                 |                  |                   |           |                 |                 |                  |                   |
| GRAND TOTAL (g/s)                              |                  |                 | 5.48             | 23.26                  | 0.10                   | 78.34                  | 12.94                   |           |                 |                 |                  |                   |           |                 |                 |                  |                   |
| GRAND TOTAL (tpy)                              |                  |                 | 190.63           | 808.48                 | 3.35                   | 2723.30                | 449.77                  |           |                 |                 |                  |                   |           |                 |                 |                  |                   |
|                                                |                  |                 |                  |                        |                        |                        |                         |           |                 |                 |                  |                   |           |                 |                 |                  |                   |
|                                                | Alternative B (m | odeled year 20  | 028)             |                        |                        |                        |                         |           |                 |                 |                  |                   |           |                 |                 |                  |                   |
|                                                |                  |                 | Area So          | ource #1               |                        |                        |                         |           |                 |                 |                  |                   |           |                 |                 |                  |                   |
|                                                |                  | Constructi      | on of New Well   | s and Productio        | n of Wells             |                        |                         |           |                 |                 |                  |                   |           |                 |                 |                  |                   |
|                                                |                  |                 | Emission         | s (g/s/m2)             |                        |                        |                         |           |                 |                 |                  |                   |           |                 |                 |                  |                   |
| Location                                       | area (m2)        | SO <sub>2</sub> | NO <sub>x</sub>  | PM <sub>10</sub> (PMC) | PM <sub>2.5</sub> (PMF | 5                      |                         |           |                 |                 |                  |                   |           |                 |                 |                  |                   |
| Coalmont Niobrara                              | 423.951.805      | 1.306E-10       | 2.941E-08        | 1.073E-07              | 1.761E-08              | 1                      |                         |           |                 |                 |                  |                   |           |                 |                 |                  |                   |
| Granby Anticline                               | 232,221,270      | 3.021E-12       | 3.475E-09        | 1.242E-08              | 2.088E-09              | 1                      |                         |           |                 |                 |                  |                   |           |                 |                 |                  |                   |
| McCallum and South McCallum Infill             | 426,037,728      | 2.176E-11       | 4.996E-09        | 1.822E-08              | 2.992E-09              | 1                      |                         |           |                 |                 |                  |                   |           |                 |                 |                  |                   |
| Other North and Middle Park Field Infill       | 253,604,956      | 1.828E-11       | 4.196E-09        | 1.530E-08              | 2.513E-09              |                        |                         |           |                 |                 |                  |                   |           |                 |                 |                  |                   |
| Rank Wildcats                                  | 232,221,270      | 1.996E-11       | 4.583E-09        | 1.671E-08              | 2.744E-09              | 1                      |                         |           |                 |                 |                  |                   |           |                 |                 |                  |                   |
| CBMa                                           | 329,051,182.82   | 2.398E-12       | 2.758E-09        | 9.859E-09              | 1.658E-09              |                        |                         |           |                 |                 |                  |                   |           |                 |                 |                  |                   |
| CBMb                                           | 195,874,382.75   | 2.398E-12       | 2.758E-09        | 9.859E-09              | 1.658E-09              | <u> </u>               |                         |           |                 |                 |                  |                   |           |                 |                 |                  |                   |
| CBMc                                           | 206,478,165.68   | 2.398E-12       | 2.758E-09        | 9.859E-09              | 1.658E-09              | i                      |                         |           |                 |                 |                  |                   |           |                 |                 |                  |                   |
| OBINO                                          | 200, 170, 100.00 | 2.0002 12       |                  | ource #2               | 1.0002 00              | 1                      |                         |           |                 |                 |                  |                   |           |                 |                 |                  |                   |
|                                                |                  | Drill Ria E     | Engines (Constru |                        | s (a/s/m2)             | 1                      |                         |           |                 |                 |                  |                   |           |                 |                 |                  |                   |
| Coalmont Niobrara (CN)                         | 423,951,805      | 3,209E-11       | 2.991E-09        | 2.531E-11              | 2.531E-11              | 1                      |                         |           |                 |                 |                  |                   |           |                 |                 |                  |                   |
| Granby Anticline (GA)                          | 232,221,270      | 0               | 0                | 0                      | 0                      | i i                    |                         |           |                 |                 |                  |                   |           |                 |                 |                  |                   |
| McCallum and South McCallum Infill (MC)        | 426,037,728      | 5.322E-12       | 4.960E-10        | 4.197E-12              | 4.197E-12              | 1                      |                         |           |                 |                 |                  |                   |           |                 |                 |                  |                   |
| Other North and Middle Park Field Infill (OTH) | 253,604,956      | 4.470E-12       | 4.166E-10        | 3.525E-12              | 3.525E-12              | i e                    |                         |           |                 |                 |                  |                   |           |                 |                 |                  |                   |
| Rank Wildcats (RW)                             | 232,221,270      | 4.882E-12       | 4.550E-10        | 3.850E-12              | 3.850E-12              |                        |                         |           |                 |                 |                  |                   |           |                 |                 |                  |                   |
| CBM (CBMa, CBMb, CBMc)                         | 731,403,731      | 0               | 0                | 0                      | 0                      | 1                      |                         |           |                 |                 |                  |                   |           |                 |                 |                  |                   |
| (a, obino, obino,                              | 701, 100,701     | - J             | ,                |                        | Ţ,                     |                        |                         |           |                 |                 |                  |                   |           |                 |                 |                  |                   |
|                                                |                  |                 |                  |                        |                        |                        |                         |           |                 |                 |                  |                   |           |                 |                 |                  |                   |
|                                                |                  |                 |                  |                        |                        |                        |                         |           |                 |                 |                  |                   |           |                 |                 |                  |                   |
|                                                | No of Wells      | No of           | İ                |                        |                        |                        |                         |           |                 |                 |                  |                   |           |                 |                 |                  |                   |
|                                                | Constructed in   | Producing       |                  |                        |                        |                        |                         |           |                 |                 |                  |                   |           |                 |                 |                  |                   |
| Alternative A                                  | 2028             | Wells in 2028   |                  |                        |                        |                        |                         |           |                 |                 |                  |                   |           |                 |                 |                  |                   |
| Coalmont Niobrara                              | 0                | 7               |                  |                        |                        |                        |                         |           |                 |                 |                  |                   |           |                 |                 |                  |                   |
| CBM                                            | 0                | 0               |                  |                        |                        |                        |                         |           |                 |                 |                  |                   |           |                 |                 |                  |                   |
| Granby Anticline                               | 0                | 0               |                  |                        |                        |                        |                         |           |                 |                 |                  |                   |           |                 |                 |                  |                   |
| McCallum and South McCallum Infill             | 0                | 84              |                  |                        | -                      |                        |                         |           |                 |                 |                  |                   |           |                 |                 |                  |                   |
| Other North and Middle Park Field Infill       | 0                | 04              | -                |                        |                        |                        |                         |           |                 |                 |                  |                   |           |                 |                 |                  |                   |
| Rank Wildcats                                  | 0                | 17              | l                |                        |                        |                        |                         |           |                 |                 |                  |                   |           |                 |                 |                  |                   |
| TOTAL                                          | 0                | 109             | -                |                        |                        |                        |                         |           |                 |                 |                  |                   |           |                 |                 |                  |                   |
| IVIAL                                          | U                | 109             | l                |                        |                        |                        |                         |           |                 |                 |                  |                   |           |                 |                 |                  |                   |

| Table 5.24<br>ALTERNATIVE B - TOTAL EN                                                  | IISSIONS                                                                                        | BY YEAR                                                                                         |                                                                                                 |                                                                                                  |                                                                                                      |                                                                                                      |                                                                                                      |                                                                                                        |                                                                                                |                                                                                                         |                                                                                                         |                                                                                                         |                                                                                                                   |                                                                                                          |                                                                                                          |                                                                                                          |                                                                                                          |                                                                                                          |                                                                                                          |                                                                                           |
|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| Wells to be Drilled Annually                                                            |                                                                                                 | DI ILAN                                                                                         |                                                                                                 |                                                                                                  |                                                                                                      |                                                                                                      |                                                                                                      |                                                                                                        |                                                                                                |                                                                                                         |                                                                                                         |                                                                                                         |                                                                                                                   |                                                                                                          |                                                                                                          |                                                                                                          |                                                                                                          |                                                                                                          |                                                                                                          |                                                                                           |
| Year                                                                                    | 1<br>2009                                                                                       | 2<br>2010                                                                                       | 3<br>2011                                                                                       | 4<br>2012                                                                                        | 5<br>2013                                                                                            | 6<br>2014                                                                                            | 7<br>2015                                                                                            | 8<br>2016                                                                                              | 9<br>2017                                                                                      | 10<br>2018                                                                                              | 11<br>2019                                                                                              | 12<br>2020                                                                                              | 13<br>2021                                                                                                        | 14<br>2022                                                                                               | 15<br>2023                                                                                               | 16<br>2024                                                                                               | 17<br>2025                                                                                               | 18<br>2026                                                                                               | 19<br>2027                                                                                               | 20<br>2028                                                                                |
| Wells Drilled Per Year Total Producing Wells                                            | 14<br>14                                                                                        | 14<br>28                                                                                        | 14<br>42                                                                                        | 14<br>56                                                                                         | 28<br>84                                                                                             | 17<br>101                                                                                            | 17<br>118                                                                                            | 17<br>135                                                                                              | 31<br>166                                                                                      | 16<br>182                                                                                               | 16<br>198                                                                                               | 16<br>214                                                                                               | 30<br>244                                                                                                         | 16<br>260                                                                                                | 16<br>276                                                                                                | 16<br>292                                                                                                | 30<br>322                                                                                                | 16<br>338                                                                                                | 16<br>354                                                                                                | 16<br>370                                                                                 |
|                                                                                         |                                                                                                 |                                                                                                 |                                                                                                 |                                                                                                  |                                                                                                      |                                                                                                      |                                                                                                      |                                                                                                        |                                                                                                |                                                                                                         |                                                                                                         |                                                                                                         |                                                                                                                   |                                                                                                          |                                                                                                          |                                                                                                          |                                                                                                          |                                                                                                          |                                                                                                          |                                                                                           |
| Estimated Construction Emis                                                             | ssions (ton                                                                                     | s/yr)<br>2                                                                                      | 3                                                                                               | 4                                                                                                | 5                                                                                                    | 6                                                                                                    | 7                                                                                                    | 8                                                                                                      | 9                                                                                              | 10                                                                                                      | 11                                                                                                      | 12                                                                                                      | 13                                                                                                                | 14                                                                                                       | 15                                                                                                       | 16                                                                                                       | 17                                                                                                       | 18                                                                                                       | 19                                                                                                       | 20                                                                                        |
| Tier 2 Drill Rig Engines (%)                                                            | <b>2009</b><br>100%                                                                             | <b>2010</b><br>100%                                                                             | <b>2011</b><br>0%                                                                               | <b>2012</b><br>0%                                                                                | <b>2013</b><br>0%                                                                                    | <b>2014</b><br>0%                                                                                    | <b>2015</b><br>0%                                                                                    | <b>2016</b><br>0%                                                                                      | <b>2017</b><br>0%                                                                              | <b>2018</b><br>0%                                                                                       | <b>2019</b><br>0%                                                                                       | <b>2020</b><br>0%                                                                                       | <b>2021</b><br>0%                                                                                                 | <b>2022</b><br>0%                                                                                        | <b>2023</b><br>0%                                                                                        | <b>2024</b><br>0%                                                                                        | <b>2025</b><br>0%                                                                                        | <b>2026</b><br>0%                                                                                        | <b>2027</b><br>0%                                                                                        | <b>2028</b><br>0%                                                                         |
| Tier 4a Drill Rig Engines (%)<br>Tier 4b Drill Rig Engines (%)                          | 0%<br>0%                                                                                        | 0%<br>0%                                                                                        | 100%<br>0%                                                                                      | 100%<br>0%                                                                                       | 100%<br>0%                                                                                           | 100%<br>0%                                                                                           | 0%<br>100%                                                                                           | 0%<br>100%                                                                                             | 0%<br>100%                                                                                     | 0%<br>100%                                                                                              | 0%<br>100%                                                                                              | 0%<br>100%                                                                                              | 0%<br>100%                                                                                                        | 0%<br>100%                                                                                               | 0%<br>100%                                                                                               | 0%<br>100%                                                                                               | 0%<br>100%                                                                                               | 0%<br>100%                                                                                               | 0%<br>100%                                                                                               | 0%<br>100%                                                                                |
|                                                                                         |                                                                                                 |                                                                                                 |                                                                                                 |                                                                                                  |                                                                                                      |                                                                                                      |                                                                                                      |                                                                                                        |                                                                                                |                                                                                                         |                                                                                                         |                                                                                                         |                                                                                                                   |                                                                                                          |                                                                                                          |                                                                                                          |                                                                                                          |                                                                                                          |                                                                                                          |                                                                                           |
| CO<br>NOx                                                                               | 59<br>102                                                                                       | 59<br>102                                                                                       | 59<br>79                                                                                        | 59<br>79                                                                                         | 117<br>157                                                                                           | 71<br>95                                                                                             | 71<br>95                                                                                             | 71<br>95                                                                                               | 130<br>174                                                                                     | 67<br>90                                                                                                | 67<br>90                                                                                                | 67<br>90                                                                                                | 126<br>168                                                                                                        | 67<br>90                                                                                                 | 67<br>90                                                                                                 | 67<br>90                                                                                                 | 126<br>168                                                                                               | 67<br>90                                                                                                 | 67<br>90                                                                                                 | 6                                                                                         |
| SO2<br>PM10                                                                             | 2<br>137                                                                                        | 2<br>137                                                                                        | 2<br>136                                                                                        | 2<br>136                                                                                         | 5<br>272                                                                                             | 3<br>165                                                                                             | 3<br>164                                                                                             | 3<br>164                                                                                               | 5<br>298                                                                                       | 3<br>154                                                                                                | 3<br>154                                                                                                | 3<br>154                                                                                                | 5<br>289                                                                                                          | 3<br>154                                                                                                 | 3<br>154                                                                                                 | 3<br>154                                                                                                 | 5<br>289                                                                                                 | 3<br>154                                                                                                 | 3<br>154                                                                                                 | 15                                                                                        |
| PM2.5                                                                                   | 18                                                                                              | 18                                                                                              | 17                                                                                              | 17                                                                                               | 33                                                                                                   | 20                                                                                                   | 19                                                                                                   | 19                                                                                                     | 34                                                                                             | 18                                                                                                      | 18                                                                                                      | 18                                                                                                      | 33                                                                                                                | 18                                                                                                       | 18                                                                                                       | 18                                                                                                       | 33                                                                                                       | 18                                                                                                       | 18                                                                                                       | 15                                                                                        |
| VOC                                                                                     | 27                                                                                              | 27                                                                                              | 13                                                                                              | 13                                                                                               | 27                                                                                                   | 16                                                                                                   | 12                                                                                                   | 12                                                                                                     | 22                                                                                             | 12                                                                                                      | 12                                                                                                      | 12                                                                                                      | 22                                                                                                                | 12                                                                                                       | 12                                                                                                       | 12                                                                                                       | 22                                                                                                       | 12                                                                                                       | 12                                                                                                       | 1:                                                                                        |
| Formaldehyde<br>Benzene                                                                 | 0.08                                                                                            | 0.08                                                                                            | 0.08<br>0.06                                                                                    | 0.08                                                                                             | 0.15<br>0.12                                                                                         | 0.09                                                                                                 | 0.10                                                                                                 | 0.10                                                                                                   | 0.18<br>0.15                                                                                   | 0.10                                                                                                    | 0.10                                                                                                    | 0.10                                                                                                    | 0.18<br>0.14                                                                                                      | 0.10                                                                                                     | 0.10<br>0.08                                                                                             | 0.10                                                                                                     | 0.18<br>0.14                                                                                             | 0.10                                                                                                     | 0.10                                                                                                     | 0.10                                                                                      |
| Toluene                                                                                 | 0.03                                                                                            | 0.08                                                                                            | 0.08                                                                                            | 0.08                                                                                             | 0.12                                                                                                 | 0.03                                                                                                 | 0.03                                                                                                 | 0.08                                                                                                   | 0.15                                                                                           | 0.03                                                                                                    | 0.03                                                                                                    | 0.08                                                                                                    | 0.14                                                                                                              | 0.08                                                                                                     | 0.08                                                                                                     | 0.08                                                                                                     | 0.14                                                                                                     | 0.08                                                                                                     | 0.08                                                                                                     | 0.0                                                                                       |
| Xylene                                                                                  | 0.02                                                                                            | 0.02                                                                                            | 0.02                                                                                            | 0.02                                                                                             | 0.04                                                                                                 | 0.02                                                                                                 | 0.02                                                                                                 | 0.02                                                                                                   | 0.04                                                                                           | 0.02                                                                                                    | 0.02                                                                                                    | 0.02                                                                                                    | 0.04                                                                                                              | 0.02                                                                                                     | 0.02                                                                                                     | 0.02                                                                                                     | 0.04                                                                                                     | 0.02                                                                                                     | 0.02                                                                                                     | 0.0                                                                                       |
| Ethylbenzene<br>Hexane                                                                  | 0.00                                                                                            | 0.00                                                                                            | 0.00<br>0.01                                                                                    | 0.00<br>0.01                                                                                     | 0.00                                                                                                 | 0.00                                                                                                 | 0.00                                                                                                 | 0.00                                                                                                   | 0.00                                                                                           | 0.00                                                                                                    | 0.00                                                                                                    | 0.00                                                                                                    | 0.00                                                                                                              | 0.00                                                                                                     | 0.00                                                                                                     | 0.00                                                                                                     | 0.00                                                                                                     | 0.00                                                                                                     | 0.00                                                                                                     | 0.0                                                                                       |
| Total HAPs                                                                              | 0.20                                                                                            | 0.20                                                                                            | 0.20                                                                                            | 0.20                                                                                             | 0.39                                                                                                 | 0.02                                                                                                 | 0.26                                                                                                 | 0.26                                                                                                   | 0.47                                                                                           | 0.24                                                                                                    | 0.24                                                                                                    | 0.24                                                                                                    | 0.45                                                                                                              | 0.24                                                                                                     | 0.24                                                                                                     | 0.24                                                                                                     | 0.45                                                                                                     | 0.24                                                                                                     | 0.24                                                                                                     | 0.2                                                                                       |
| CO2                                                                                     | 10,909                                                                                          | 10,909                                                                                          | 10,909                                                                                          | 10,909                                                                                           | 21,819                                                                                               | 13,247                                                                                               | 14,331                                                                                               | 14,331                                                                                                 | 26,133                                                                                         | 13,488                                                                                                  | 13,488                                                                                                  | 13,488                                                                                                  | 25,290                                                                                                            | 13,488                                                                                                   | 13,488                                                                                                   | 13,488                                                                                                   | 25,290                                                                                                   | 13,488                                                                                                   | 13,488                                                                                                   | 13,48                                                                                     |
| CH4<br>N2O                                                                              | 0.32                                                                                            | 0.32                                                                                            | 0.32                                                                                            | 0.32                                                                                             | 0.64                                                                                                 | 0.39                                                                                                 | 0.39                                                                                                 | 0.39                                                                                                   | 0.71                                                                                           | 0.37                                                                                                    | 0.37                                                                                                    | 0.37                                                                                                    | 0.69                                                                                                              | 0.37                                                                                                     | 0.37                                                                                                     | 0.37                                                                                                     | 0.69                                                                                                     | 0.37                                                                                                     | 0.37                                                                                                     | 0.3                                                                                       |
| Estimated Production Emiss                                                              | ione (tone                                                                                      | (vr)                                                                                            |                                                                                                 |                                                                                                  |                                                                                                      |                                                                                                      |                                                                                                      |                                                                                                        |                                                                                                |                                                                                                         |                                                                                                         |                                                                                                         |                                                                                                                   |                                                                                                          |                                                                                                          |                                                                                                          |                                                                                                          |                                                                                                          |                                                                                                          |                                                                                           |
| Year                                                                                    | 1 2009                                                                                          | 2<br>2010                                                                                       | 3<br>2011                                                                                       | 4<br>2012                                                                                        | 5<br>2013                                                                                            | 6<br>2014                                                                                            | 7<br>2015                                                                                            | 8<br>2016                                                                                              | 9<br>2017                                                                                      | 10<br>2018                                                                                              | 11<br>2019                                                                                              | 12<br>2020                                                                                              | 13<br>2021                                                                                                        | 14<br>2022                                                                                               | 15<br>2023                                                                                               | 16<br>2024                                                                                               | 17<br>2025                                                                                               | 18<br>2026                                                                                               | 19<br>2027                                                                                               | 20<br>2028                                                                                |
| CO<br>NOx                                                                               | 5<br>25                                                                                         | 9                                                                                               | 14<br>74                                                                                        | 19<br>98                                                                                         | 28<br>147                                                                                            | 34<br>177                                                                                            | 39<br>207                                                                                            | 45<br>237                                                                                              | 55<br>291                                                                                      | 61<br>319                                                                                               | 66<br>347                                                                                               | 72<br>375                                                                                               | 82<br>428                                                                                                         | 87<br>456                                                                                                | 92<br>484                                                                                                | 98<br>512                                                                                                | 108<br>564                                                                                               | 113<br>593                                                                                               | 118<br>621                                                                                               | 12-<br>64                                                                                 |
| SO2                                                                                     | 0                                                                                               | 0                                                                                               | 0                                                                                               | 0                                                                                                | 0                                                                                                    | 0                                                                                                    | 0                                                                                                    | 0                                                                                                      | 0                                                                                              | 0                                                                                                       | 0                                                                                                       | 0                                                                                                       | 0                                                                                                                 | 0                                                                                                        | 0                                                                                                        | 0                                                                                                        | 0                                                                                                        | 1                                                                                                        | 1                                                                                                        | 04                                                                                        |
| PM10                                                                                    | 88                                                                                              | 175                                                                                             | 263                                                                                             | 351                                                                                              | 526                                                                                                  | 633                                                                                                  | 739                                                                                                  | 846                                                                                                    | 1,040                                                                                          | 1,141                                                                                                   | 1,241                                                                                                   | 1,341                                                                                                   | 1,529                                                                                                             | 1,629                                                                                                    | 1,730                                                                                                    | 1,830                                                                                                    | 2,018                                                                                                    | 2,118                                                                                                    | 2,218                                                                                                    | 2,31                                                                                      |
| PM2.5<br>VOC                                                                            | 15<br>223                                                                                       | 30<br>447                                                                                       | 44<br>670                                                                                       | 59<br>893                                                                                        | 1.340                                                                                                | 106<br>1,611                                                                                         | 124<br>1.882                                                                                         | 142<br>2.154                                                                                           | 175<br>2,648                                                                                   | 192<br>2.903                                                                                            | 209<br>3,158                                                                                            | 225<br>3.414                                                                                            | 257<br>3.892                                                                                                      | 274<br>4,147                                                                                             | 291<br>4.403                                                                                             | 308<br>4,658                                                                                             | 339<br>5,137                                                                                             | 356<br>5.392                                                                                             | 373<br>5,647                                                                                             | 5,90                                                                                      |
| Formaldehyde                                                                            | 0.29                                                                                            | 0.58                                                                                            | 0.88                                                                                            | 1.17                                                                                             | 1.75                                                                                                 | 2.11                                                                                                 | 2.47                                                                                                 | 2,134                                                                                                  | 3.47                                                                                           | 3.80                                                                                                    | 4.14                                                                                                    | 4.47                                                                                                    | 5.10                                                                                                              | 5.43                                                                                                     | 5.77                                                                                                     | 6.10                                                                                                     | 6.73                                                                                                     | 7.06                                                                                                     | 7.40                                                                                                     | 7.7                                                                                       |
| Benzene                                                                                 | 0.65                                                                                            | 1.29                                                                                            | 1.94                                                                                            | 2.58                                                                                             | 3.88                                                                                                 | 4.66                                                                                                 | 5.45                                                                                                 | 6.23                                                                                                   | 7.66                                                                                           | 8.40                                                                                                    | 9.14                                                                                                    | 9.88                                                                                                    | 11.26                                                                                                             | 12.00                                                                                                    | 12.74                                                                                                    | 13.48                                                                                                    | 14.86                                                                                                    | 15.60                                                                                                    | 16.34                                                                                                    | 17.0                                                                                      |
| Toluene<br>Xylene                                                                       | 0.00                                                                                            | 0.01                                                                                            | 0.01<br>0.00                                                                                    | 0.01<br>0.00                                                                                     | 0.02                                                                                                 | 0.02                                                                                                 | 0.02                                                                                                 | 0.02<br>0.01                                                                                           | 0.03                                                                                           | 0.03                                                                                                    | 0.04                                                                                                    | 0.04                                                                                                    | 0.04                                                                                                              | 0.05                                                                                                     | 0.05<br>0.02                                                                                             | 0.05                                                                                                     | 0.06                                                                                                     | 0.06                                                                                                     | 0.07                                                                                                     | 0.0                                                                                       |
| Ethylbenzene                                                                            | 0.00                                                                                            | 0.00                                                                                            | 0.00                                                                                            | 0.00                                                                                             | 0.00                                                                                                 | 0.00                                                                                                 | 0.00                                                                                                 | 0.00                                                                                                   | 0.00                                                                                           | 0.02                                                                                                    | 0.02                                                                                                    | 0.02                                                                                                    | 0.02                                                                                                              | 0.02                                                                                                     | 0.02                                                                                                     | 0.00                                                                                                     | 0.00                                                                                                     | 0.03                                                                                                     | 0.03                                                                                                     | 0.0                                                                                       |
| Hexane                                                                                  | 3.50                                                                                            | 7.00                                                                                            | 10.50                                                                                           | 14.00                                                                                            | 20.99                                                                                                | 25.24                                                                                                | 29.49                                                                                                | 33.74                                                                                                  | 41.49                                                                                          | 45.48                                                                                                   | 49.48                                                                                                   | 53.48                                                                                                   | 60.98                                                                                                             | 64.98                                                                                                    | 68.98                                                                                                    | 72.98                                                                                                    | 80.47                                                                                                    | 84.47                                                                                                    | 88.47                                                                                                    | 92.4                                                                                      |
| Total HAPs<br>CO2                                                                       | 4.44<br>4,242                                                                                   | 8.88<br>8,484                                                                                   | 13.32<br>12,727                                                                                 | 17.77<br>16,969                                                                                  | 26.65                                                                                                | 32.04                                                                                                | 37.44                                                                                                | 42.83                                                                                                  | 52.66                                                                                          | 57.74<br>55,149                                                                                         | 62.82                                                                                                   | 67.89                                                                                                   | 77.41<br>73,936                                                                                                   | 82.48<br>78,784                                                                                          | 87.56                                                                                                    | 92.64                                                                                                    | 102.15<br>97,571                                                                                         | 107.23<br>102,419                                                                                        | 112.31<br>107,268                                                                                        | 117.3                                                                                     |
| CH4                                                                                     | 0.08                                                                                            | 0.15                                                                                            | 0.23                                                                                            | 0.30                                                                                             | 25,453<br>0.45                                                                                       | 30,605<br>0.54                                                                                       | 35,756<br>0.64                                                                                       | 40,907<br>0.73                                                                                         | 50,301<br>0.89                                                                                 | 0.98                                                                                                    | 59,997<br>1.07                                                                                          | 64,845<br>1.15                                                                                          | 1.31                                                                                                              | 1.40                                                                                                     | 83,632<br>1.49                                                                                           | 88,481<br>1.57                                                                                           | 1.73                                                                                                     | 1.82                                                                                                     | 1.91                                                                                                     | 1.9                                                                                       |
| N2O                                                                                     | 0.07                                                                                            | 0.14                                                                                            | 0.04                                                                                            |                                                                                                  |                                                                                                      |                                                                                                      |                                                                                                      |                                                                                                        |                                                                                                |                                                                                                         |                                                                                                         |                                                                                                         |                                                                                                                   |                                                                                                          |                                                                                                          |                                                                                                          |                                                                                                          |                                                                                                          | 4 70                                                                                                     |                                                                                           |
|                                                                                         |                                                                                                 | 0.11                                                                                            | 0.21                                                                                            | 0.28                                                                                             | 0.42                                                                                                 | 0.51                                                                                                 | 0.60                                                                                                 | 0.68                                                                                                   | 0.84                                                                                           | 0.92                                                                                                    | 1.00                                                                                                    | 1.08                                                                                                    | 1.23                                                                                                              | 1.31                                                                                                     | 1.39                                                                                                     | 1.47                                                                                                     | 1.63                                                                                                     | 1.71                                                                                                     | 1.79                                                                                                     | 1.8                                                                                       |
| Estimated Total Emissions (t                                                            | tons/yr)                                                                                        |                                                                                                 |                                                                                                 |                                                                                                  |                                                                                                      |                                                                                                      |                                                                                                      |                                                                                                        |                                                                                                |                                                                                                         |                                                                                                         |                                                                                                         |                                                                                                                   |                                                                                                          |                                                                                                          |                                                                                                          |                                                                                                          |                                                                                                          |                                                                                                          |                                                                                           |
| Year                                                                                    | tons/yr)<br>1<br>2009                                                                           | 2<br>2010                                                                                       | 3<br>2011                                                                                       | 4<br>2012                                                                                        | 5<br>2013                                                                                            | 6<br>2014                                                                                            | 7<br>2015                                                                                            | 8<br>2016                                                                                              | 9<br>2017                                                                                      | 10<br>2018                                                                                              | 11<br>2019                                                                                              | 12<br>2020                                                                                              | 13<br>2021                                                                                                        | 14<br>2022                                                                                               | 15<br>2023                                                                                               | 16<br>2024                                                                                               | 17<br>2025                                                                                               | 18<br>2026                                                                                               | 19<br>2027                                                                                               | 20<br>2028                                                                                |
| Year                                                                                    | 1<br>2009<br>63                                                                                 | 2<br>2010<br>68                                                                                 | 3<br>2011<br>73                                                                                 | 4<br>2012<br>77                                                                                  | 5<br>2013<br>145                                                                                     | 6<br>2014<br>105                                                                                     | 7<br>2015<br>111                                                                                     | 8<br>2016<br>116                                                                                       | 9<br>2017<br>185                                                                               | 10<br>2018<br>128                                                                                       | 11<br>2019<br>133                                                                                       | 12<br>2020<br>138                                                                                       | 13<br>2021<br>207                                                                                                 | 14<br>2022<br>154                                                                                        | <b>15 2023</b> 159                                                                                       | 16<br>2024<br>165                                                                                        | 17<br>2025<br>233                                                                                        | 18<br>2026<br>180                                                                                        | 19<br>2027<br>185                                                                                        | <b>20 2028</b> 19                                                                         |
| Year<br>CO<br>NOx                                                                       | 1<br>2009<br>63<br>127                                                                          | 2<br>2010<br>68<br>151                                                                          | 3<br>2011                                                                                       | 4<br>2012<br>77<br>177                                                                           | 5<br>2013<br>145<br>304                                                                              | 6<br>2014<br>105<br>272                                                                              | 7<br>2015<br>111<br>302                                                                              | 8<br>2016<br>116<br>332                                                                                | 9<br>2017<br>185<br>465                                                                        | 10<br>2018                                                                                              | 11<br>2019<br>133<br>437                                                                                | 12<br>2020<br>138<br>465                                                                                | 13<br>2021<br>207<br>596                                                                                          | 14<br>2022<br>154<br>546                                                                                 | 15<br>2023                                                                                               | 16<br>2024<br>165<br>602                                                                                 | 17<br>2025<br>233<br>733                                                                                 | 18<br>2026<br>180<br>682                                                                                 | 19<br>2027<br>185<br>710                                                                                 | 20<br>2028                                                                                |
| Year                                                                                    | 1<br>2009<br>63                                                                                 | 2<br>2010<br>68                                                                                 | 3<br>2011<br>73<br>152<br>2<br>399                                                              | 4<br>2012<br>77                                                                                  | 5<br>2013<br>145                                                                                     | 6<br>2014<br>105                                                                                     | 7<br>2015<br>111                                                                                     | 8<br>2016<br>116                                                                                       | 9<br>2017<br>185                                                                               | 10<br>2018<br>128<br>409                                                                                | 11<br>2019<br>133                                                                                       | 12<br>2020<br>138                                                                                       | 13<br>2021<br>207                                                                                                 | 14<br>2022<br>154                                                                                        | 15<br>2023<br>159<br>574                                                                                 | 16<br>2024<br>165                                                                                        | 17<br>2025<br>233                                                                                        | 18<br>2026<br>180                                                                                        | 19<br>2027<br>185                                                                                        | <b>20 2028</b> 19                                                                         |
| Year CO NOx SO2 PM10 PM10 PM2.5                                                         | 1<br>2009<br>63<br>127<br>2<br>225<br>33                                                        | 2<br>2010<br>68<br>151<br>2<br>313<br>48                                                        | 3<br>2011<br>73<br>152<br>2<br>399<br>61                                                        | 4<br>2012<br>77<br>177<br>2<br>487<br>76                                                         | 5<br>2013<br>145<br>304<br>5<br>798<br>122                                                           | 6<br>2014<br>105<br>272<br>3<br>798<br>127                                                           | 7<br>2015<br>111<br>302<br>3<br>903<br>143                                                           | 8<br>2016<br>116<br>332<br>3<br>1,010<br>161                                                           | 9<br>2017<br>185<br>465<br>6<br>1,339<br>209                                                   | 10<br>2018<br>128<br>409<br>3<br>1,295<br>210                                                           | 11<br>2019<br>133<br>437<br>3<br>1,395<br>226                                                           | 12<br>2020<br>138<br>465<br>3<br>1,495<br>243                                                           | 13<br>2021<br>207<br>596<br>5<br>1,818<br>290                                                                     | 14<br>2022<br>154<br>546<br>3<br>1,783<br>292                                                            | 15<br>2023<br>159<br>574<br>3<br>1,884<br>309                                                            | 16<br>2024<br>165<br>602<br>3<br>1,984<br>325                                                            | 17<br>2025<br>233<br>733<br>6<br>2,307<br>373                                                            | 18<br>2026<br>180<br>682<br>3<br>2,272<br>374                                                            | 19<br>2027<br>185<br>710<br>3<br>2,372<br>391                                                            | 20<br>2028<br>19<br>73:<br>:<br>2,47:                                                     |
| Year  CO NOx SO2 PM10 PM2.5 VOC                                                         | 1<br>2009<br>63<br>127<br>2<br>225<br>33<br>250                                                 | 2<br>2010<br>68<br>151<br>2<br>313<br>48<br>474                                                 | 3<br>2011<br>73<br>152<br>2<br>399<br>61<br>683                                                 | 4<br>2012<br>77<br>177<br>2<br>487<br>76<br>907                                                  | 5<br>2013<br>145<br>304<br>5<br>798<br>122<br>1,366                                                  | 6<br>2014<br>105<br>272<br>3<br>798<br>127<br>1,627                                                  | 7<br>2015<br>111<br>302<br>3<br>903<br>143<br>1,895                                                  | 8<br>2016<br>116<br>332<br>3<br>1,010<br>161<br>2,166                                                  | 9<br>2017<br>185<br>465<br>6<br>1,339<br>209<br>2,670                                          | 10<br>2018<br>128<br>409<br>3<br>1,295<br>210<br>2,915                                                  | 11<br>2019<br>133<br>437<br>3<br>1,395<br>226<br>3,170                                                  | 12<br>2020<br>138<br>465<br>3<br>1,495<br>243<br>3,425                                                  | 13<br>2021<br>207<br>596<br>5<br>1,818<br>290<br>3,914                                                            | 14<br>2022<br>154<br>546<br>3<br>1,783<br>292<br>4,159                                                   | 15<br>2023<br>159<br>574<br>3<br>1,884<br>309<br>4,414                                                   | 16<br>2024<br>165<br>602<br>3<br>1,984<br>325<br>4,669                                                   | 17<br>2025<br>233<br>733<br>6<br>2,307<br>373<br>5,158                                                   | 18<br>2026<br>180<br>682<br>3<br>2,272<br>374<br>5,403                                                   | 19<br>2027<br>185<br>710<br>3<br>2,372<br>391<br>5,659                                                   | 20<br>2028<br>19<br>73i<br>:<br>2,47:<br>40i<br>5,91-                                     |
| Year CO NOx SO2 PM10 PM10 PM2.5                                                         | 1<br>2009<br>63<br>127<br>2<br>225<br>33                                                        | 2<br>2010<br>68<br>151<br>2<br>313<br>48                                                        | 3<br>2011<br>73<br>152<br>2<br>399<br>61                                                        | 4<br>2012<br>77<br>177<br>2<br>487<br>76                                                         | 5<br>2013<br>145<br>304<br>5<br>798<br>122                                                           | 6<br>2014<br>105<br>272<br>3<br>798<br>127                                                           | 7<br>2015<br>111<br>302<br>3<br>903<br>143                                                           | 8<br>2016<br>116<br>332<br>3<br>1,010<br>161                                                           | 9<br>2017<br>185<br>465<br>6<br>1,339<br>209                                                   | 10<br>2018<br>128<br>409<br>3<br>1,295<br>210                                                           | 11<br>2019<br>133<br>437<br>3<br>1,395<br>226                                                           | 12<br>2020<br>138<br>465<br>3<br>1,495<br>243                                                           | 13<br>2021<br>207<br>596<br>5<br>1,818<br>290                                                                     | 14<br>2022<br>154<br>546<br>3<br>1,783<br>292                                                            | 15<br>2023<br>159<br>574<br>3<br>1,884<br>309                                                            | 16<br>2024<br>165<br>602<br>3<br>1,984<br>325                                                            | 17<br>2025<br>233<br>733<br>6<br>2,307<br>373                                                            | 18<br>2026<br>180<br>682<br>3<br>2,272<br>374                                                            | 19<br>2027<br>185<br>710<br>3<br>2,372<br>391                                                            | 20<br>2028<br>19<br>73:<br>:<br>2,47:                                                     |
| Year  CO NOX SO2 PM10 PM2.5 VOC Formaldehyde Benzene Toluene                            | 1<br>2009<br>63<br>127<br>2<br>225<br>33<br>250<br>0.37<br>0.71<br>0.03                         | 2<br>2010<br>68<br>151<br>2<br>313<br>48<br>474<br>0.66<br>1.35<br>0.03                         | 3<br>2011<br>73<br>152<br>2<br>399<br>61<br>683<br>0.95<br>2.00<br>0.03                         | 4<br>2012<br>77<br>177<br>2<br>487<br>76<br>907<br>1.25<br>2.65<br>0.04                          | 5<br>2013<br>145<br>304<br>5<br>798<br>122<br>1,366<br>1.91<br>4.00<br>0.07                          | 6<br>2014<br>105<br>272<br>3<br>798<br>127<br>1,627<br>2.20<br>4.74<br>0.05                          | 7<br>2015<br>111<br>302<br>3<br>903<br>143<br>1,895<br>2.57<br>5.53<br>0.06                          | 8<br>2016<br>116<br>332<br>3<br>1,010<br>161<br>2,166<br>2.92<br>6.31<br>0.06                          | 9<br>2017<br>185<br>465<br>6<br>1,339<br>209<br>2,670<br>3.65<br>7.81<br>0.09                  | 10<br>2018<br>128<br>409<br>3<br>1,295<br>210<br>2,915<br>3.90<br>8.48<br>0.07                          | 11<br>2019<br>133<br>437<br>3<br>1,395<br>226<br>3,170<br>4.23<br>9.21<br>0.07                          | 12<br>2020<br>138<br>465<br>3<br>1,495<br>243<br>3,425<br>4.57<br>9.95<br>0.07                          | 13<br>2021<br>207<br>596<br>5<br>1,818<br>290<br>3,914<br>5.28<br>11.40<br>0.11                                   | 14<br>2022<br>154<br>546<br>3<br>1,783<br>292<br>4,159<br>5.53<br>12.08<br>0.08                          | 15<br>2023<br>159<br>574<br>3<br>1,884<br>309<br>4,414<br>5.86<br>12.81<br>0.08                          | 16<br>2024<br>165<br>602<br>3<br>1,984<br>325<br>4,669<br>6.20<br>13.55<br>0.09                          | 17<br>2025<br>233<br>733<br>6<br>2,307<br>373<br>5,158<br>6.91<br>15.00<br>0.12                          | 18<br>2026<br>180<br>682<br>3<br>2,272<br>374<br>5,403<br>7.16<br>15.68<br>0.09                          | 19<br>2027<br>185<br>710<br>3<br>2,372<br>391<br>5,659<br>7.49<br>16.41<br>0.10                          | 20<br>2028<br>19<br>73:<br>:<br>2,47:<br>40:<br>5,91:<br>7.8:<br>17.1:                    |
| Year  CO NOx SO2 PM10 PM2.5 VOC Formaldehyde Benzene Toluene Xylene                     | 1<br>2009<br>63<br>127<br>2<br>225<br>33<br>250<br>0.37<br>0.71<br>0.03<br>0.02                 | 2<br>2010<br>68<br>151<br>2<br>313<br>48<br>474<br>0.66<br>1.35<br>0.03<br>0.02                 | 3<br>2011<br>73<br>152<br>2<br>399<br>61<br>683<br>0.95<br>2.00<br>0.03<br>0.02                 | 4<br>2012<br>77<br>177<br>2<br>487<br>76<br>907<br>1.25<br>2.65<br>0.04<br>0.02                  | 5<br>2013<br>145<br>304<br>5<br>798<br>122<br>1,366<br>1,91<br>4.00<br>0.07<br>0.04                  | 6<br>2014<br>105<br>272<br>3<br>798<br>127<br>1,627<br>2.20<br>4.74<br>0.05<br>0.03                  | 7<br>2015<br>111<br>302<br>3<br>903<br>143<br>1,895<br>2.57<br>5.53<br>0.06<br>0.03                  | 8<br>2016<br>116<br>332<br>3<br>1,010<br>161<br>2,166<br>2,92<br>6.31<br>0.06<br>0.04                  | 9<br>2017<br>185<br>465<br>6<br>1,339<br>209<br>2,670<br>3.65<br>7.81<br>0.09<br>0.06          | 10<br>2018<br>128<br>409<br>3<br>1,295<br>210<br>2,915<br>3,90<br>8.48<br>0.07<br>0.04                  | 11<br>2019<br>133<br>437<br>3<br>1,395<br>226<br>3,170<br>4.23<br>9.21<br>0.07<br>0.04                  | 12<br>2020<br>138<br>465<br>3<br>1,495<br>243<br>3,425<br>4.57<br>9.95<br>0.07<br>0.04                  | 13<br>2021<br>207<br>596<br>5<br>1,818<br>290<br>3,914<br>5.28<br>11.40<br>0.11<br>0.06                           | 14<br>2022<br>154<br>546<br>3<br>1,783<br>292<br>4,159<br>5,53<br>12.08<br>0.08<br>0.05                  | 15<br>2023<br>159<br>574<br>3<br>1,884<br>309<br>4,414<br>5.86<br>12.81<br>0.08<br>0.05                  | 16<br>2024<br>165<br>602<br>3<br>1,984<br>325<br>4,669<br>6.20<br>13.55<br>0.09<br>0.05                  | 17<br>2025<br>233<br>733<br>6<br>2,307<br>373<br>5,158<br>6,91<br>15.00<br>0.12<br>0.07                  | 18<br>2026<br>180<br>682<br>3<br>2,272<br>374<br>5,403<br>7.16<br>15.68<br>0.09<br>0.05                  | 19<br>2027<br>185<br>710<br>3<br>2,372<br>391<br>5,659<br>7.49<br>16.41<br>0.10<br>0.05                  | 20<br>2028<br>19<br>73:<br>2,47:<br>40:<br>5,91-<br>7.8:<br>17.1:<br>0.1:<br>0.0:         |
| Year  CO NOX SO2 PM10 PM2.5 VOC Formaldehyde Benzene Toluene                            | 1<br>2009<br>63<br>127<br>2<br>225<br>33<br>250<br>0.37<br>0.71<br>0.03                         | 2<br>2010<br>68<br>151<br>2<br>313<br>48<br>474<br>0.66<br>1.35<br>0.03                         | 3<br>2011<br>73<br>152<br>2<br>399<br>61<br>683<br>0.95<br>2.00<br>0.03                         | 4<br>2012<br>77<br>177<br>2<br>487<br>76<br>907<br>1.25<br>2.65<br>0.04                          | 5<br>2013<br>145<br>304<br>5<br>798<br>122<br>1,366<br>1.91<br>4.00<br>0.07                          | 6<br>2014<br>105<br>272<br>3<br>798<br>127<br>1,627<br>2.20<br>4.74<br>0.05                          | 7<br>2015<br>111<br>302<br>3<br>903<br>143<br>1,895<br>2.57<br>5.53<br>0.06                          | 8<br>2016<br>116<br>332<br>3<br>1,010<br>161<br>2,166<br>2.92<br>6.31<br>0.06                          | 9<br>2017<br>185<br>465<br>6<br>1,339<br>209<br>2,670<br>3.65<br>7.81<br>0.09                  | 10<br>2018<br>128<br>409<br>3<br>1,295<br>210<br>2,915<br>3.90<br>8.48<br>0.07                          | 11<br>2019<br>133<br>437<br>3<br>1,395<br>226<br>3,170<br>4.23<br>9.21<br>0.07                          | 12<br>2020<br>138<br>465<br>3<br>1,495<br>243<br>3,425<br>4.57<br>9.95<br>0.07                          | 13<br>2021<br>207<br>596<br>5<br>1,818<br>290<br>3,914<br>5.28<br>11.40<br>0.11                                   | 14<br>2022<br>154<br>546<br>3<br>1,783<br>292<br>4,159<br>5.53<br>12.08<br>0.08                          | 15<br>2023<br>159<br>574<br>3<br>1,884<br>309<br>4,414<br>5.86<br>12.81<br>0.08                          | 16<br>2024<br>165<br>602<br>3<br>1,984<br>325<br>4,669<br>6.20<br>13.55<br>0.09                          | 17<br>2025<br>233<br>733<br>6<br>2,307<br>373<br>5,158<br>6.91<br>15.00<br>0.12                          | 18<br>2026<br>180<br>682<br>3<br>2,272<br>374<br>5,403<br>7.16<br>15.68<br>0.09                          | 19<br>2027<br>185<br>710<br>3<br>2,372<br>391<br>5,659<br>7.49<br>16.41<br>0.10                          | 20<br>2028<br>19<br>73:<br>:<br>2,47:<br>40:<br>5,91:<br>7.8:<br>17.1:                    |
| Year  CO NOX SO2 PM10 PM2.5 VOC Formaldehyde Benzene Toluene Xylene Ethylbenzene        | 1<br>2009<br>63<br>127<br>2<br>225<br>33<br>250<br>0.37<br>0.71<br>0.03<br>0.02<br>0.00         | 2<br>2010<br>68<br>151<br>2<br>313<br>48<br>474<br>0.66<br>1.35<br>0.03<br>0.02<br>0.00         | 3<br>2011<br>73<br>152<br>2<br>399<br>61<br>683<br>0.95<br>2.00<br>0.03<br>0.02<br>0.00         | 4<br>2012<br>77<br>177<br>2<br>487<br>76<br>907<br>1.25<br>2.65<br>0.04<br>0.02<br>0.00          | 5<br>2013<br>145<br>304<br>5<br>798<br>122<br>1,366<br>1,91<br>4.00<br>0.07<br>0.04<br>0.00          | 6<br>2014<br>105<br>272<br>3<br>798<br>127<br>1,627<br>2,20<br>4,74<br>0.05<br>0.03<br>0.00          | 7<br>2015<br>111<br>302<br>3<br>903<br>143<br>1,895<br>2.57<br>5.53<br>0.06<br>0.03<br>0.00          | 8<br>2016<br>116<br>332<br>3<br>1,010<br>161<br>2,166<br>2.92<br>6.31<br>0.06<br>0.04<br>0.00          | 9<br>2017<br>185<br>465<br>6<br>1,339<br>209<br>2,670<br>3.65<br>7.81<br>0.09<br>0.06<br>0.00  | 10<br>2018<br>128<br>409<br>3<br>1,295<br>210<br>2,915<br>3,90<br>8,48<br>0.07<br>0.04<br>0.00          | 11<br>2019<br>133<br>437<br>3<br>1,395<br>226<br>3,170<br>4.23<br>9.21<br>0.07<br>0.04<br>0.00          | 12<br>2020<br>138<br>465<br>3<br>1,495<br>243<br>3,425<br>4.57<br>9.95<br>0.07<br>0.04                  | 13<br>2021<br>207<br>596<br>5<br>1,818<br>290<br>3,914<br>5.28<br>11.40<br>0.11<br>0.06<br>0.00                   | 14<br>2022<br>154<br>546<br>3<br>1,783<br>292<br>4,159<br>5.53<br>12.08<br>0.08<br>0.05<br>0.00          | 15<br>2023<br>159<br>574<br>3<br>1,884<br>309<br>4,414<br>5.86<br>12.81<br>0.08<br>0.05<br>0.05          | 16<br>2024<br>165<br>602<br>3<br>1,984<br>325<br>4,669<br>6.20<br>13.55<br>0.09<br>0.05                  | 17<br>2025<br>233<br>733<br>6<br>2,307<br>373<br>5,158<br>6,91<br>15.00<br>0.12<br>0.07<br>0.00          | 18<br>2026<br>180<br>682<br>3<br>2,272<br>374<br>5,403<br>7.16<br>15.68<br>0.09<br>0.05<br>0.01          | 19<br>2027<br>185<br>710<br>3<br>2,372<br>391<br>5,659<br>7.49<br>16.41<br>0.10<br>0.05<br>0.01          | 20<br>2028<br>19<br>733<br>2,477<br>400<br>5,91-<br>7.88<br>17.11<br>0.01<br>0.00         |
| Year  CO NOX SO2 PM10 PM2.5 VOC Formaldehyde Benzene Toluene Xylene Ethylbenzene Hexane | 1<br>2009<br>63<br>127<br>2<br>225<br>33<br>250<br>0.37<br>0.71<br>0.03<br>0.02<br>0.00<br>3.51 | 2<br>2010<br>68<br>151<br>2<br>313<br>48<br>474<br>0.66<br>1.35<br>0.03<br>0.02<br>0.00<br>7.01 | 3<br>2011<br>73<br>152<br>2<br>399<br>61<br>683<br>0.95<br>2.00<br>0.03<br>0.02<br>0.00<br>0.00 | 4<br>2012<br>77<br>177<br>2<br>487<br>76<br>907<br>1.25<br>2.65<br>0.04<br>0.02<br>0.00<br>14.01 | 5<br>2013<br>145<br>304<br>5<br>798<br>122<br>1,366<br>1.91<br>4.00<br>0.07<br>0.04<br>0.00<br>21.02 | 6<br>2014<br>105<br>272<br>3<br>798<br>127<br>1,627<br>2,20<br>4,74<br>0.05<br>0.03<br>0.00<br>25,26 | 7<br>2015<br>111<br>302<br>3<br>903<br>143<br>1,895<br>2,57<br>5,53<br>0,06<br>0,03<br>0,00<br>29,51 | 8<br>2016<br>116<br>332<br>3<br>1,010<br>161<br>2,166<br>2.92<br>6.31<br>0.06<br>0.04<br>0.00<br>33.75 | 9<br>2017<br>185<br>465<br>6<br>1,339<br>209<br>2,670<br>3,655<br>7,81<br>0.09<br>0.06<br>0.00 | 10<br>2018<br>128<br>409<br>3<br>1,295<br>210<br>2,915<br>3,90<br>8,48<br>0.07<br>0.04<br>0.00<br>45,50 | 11<br>2019<br>133<br>437<br>3<br>1,395<br>226<br>3,170<br>4,23<br>9,21<br>0,07<br>0,04<br>0,00<br>49,50 | 12<br>2020<br>138<br>465<br>3<br>1,495<br>243<br>3,425<br>4,57<br>9,95<br>0,07<br>0,04<br>0,00<br>53,50 | 13<br>2021<br>207<br>596<br>5<br>1,818<br>290<br>3,914<br>5,228<br>11.40<br>0.11<br>0.06<br>0.00<br>0.00<br>61.01 | 14<br>2022<br>154<br>546<br>3<br>1,783<br>292<br>4,159<br>5,53<br>12.08<br>0.08<br>0.05<br>0.00<br>64.99 | 15<br>2023<br>159<br>574<br>3<br>1,884<br>309<br>4,414<br>5.86<br>12.81<br>0.08<br>0.05<br>0.00<br>68.99 | 16<br>2024<br>165<br>602<br>3<br>1,984<br>325<br>4,669<br>6.20<br>13.55<br>0.09<br>0.05<br>0.00<br>72.99 | 17<br>2025<br>233<br>733<br>6<br>2,307<br>373<br>5,158<br>6,91<br>15.00<br>0.12<br>0.07<br>0.00<br>80.50 | 18<br>2026<br>180<br>682<br>3<br>2,272<br>374<br>5,403<br>7,16<br>15,68<br>0.09<br>0.05<br>0.01<br>84,49 | 19<br>2027<br>185<br>710<br>3<br>2,372<br>391<br>5,659<br>7,49<br>16.41<br>0.10<br>0.05<br>0.01<br>88.48 | 20<br>2028<br>19<br>733<br>2,447<br>406<br>5,91<br>7.83<br>17.11<br>0.01<br>0.00<br>92.44 |



Volume Three

This page is intentionally left blank.